我有一个CSR格式的矩阵,需要一个c ++向量,该向量包含每行非零条目(计数)的数量,该数量限于大小不同的正方形,对角线块。
// The matrix in CSR format
std::vector<int> row_idx = {0,2,4,6,10,13}; // size n+1 where 0-n are the idx of the row starts in values and column_idx and n+1 the TOTAL number of values
std::vector<int> values = {1,6,2,7,3,8,10,11,4,9,12,13,5}; // nonzero matrix values
std::vector<int> column_idx = {0,3,1,3,2,4,0,1,3,4,2,3,4}; // column indices of the values
下面的示例有两个大小分别为A和B的块(感兴趣的块始终是正方形且在对角线上)。
此示例的预期结果将是nnz_in_ranges [n] = {1,1,2,2,3},但是由于它需要嵌入另一个例程中,因此我主要是在寻找一个例程来使用C ++。像这样:
// block A
int rangeStart = 0;
int rangeEnd = 2;
// block B
//int rangeStart = 2;
//int rangeEnd = n;
for (int i = rangeStart; i<rangeEND; ++i)
{
nnz_in_ranges[n] = ...
}
// desired result for block A: nnz_in_ranges[n] = {1,1,0,0,0}
// desired result for block B: nnz_in_ranges[n] = {0,0,2,2,3}
我尝试使用std :: count ...函数解决它,但由于无法引入列范围,因此无法扩展下面的代码,计算每行的非零值。
有人知道如何解决此问题吗?
#include <stdio.h>
#include <iostream>
#include <vector>
#include <algorithm>
int main()
{
// NxN matrix example
/*
index 0 1 2 3 4
______________________
0 | 1 0 | 0 6 0 |
| A | |
1 | 0 2 | 0 7 0 |
|--------------------|
2 | 0 0 | 3 0 8 |
| | B |
3 | 10 11 | 0 4 9 | expected result: nnz_in_ranges[n] = {1,1,2,2,3}
| | | here ranges are A and B
4 | 0 0 |12 13 5 |
----------------------
*/
// matrix in CSR format
int n = 5; // matrix size
int nnz = 13; // number of nonzero values
// The matrix in CSR format
std::vector<int> row_idx = {0,2,4,6,10,13}; // size n+1 where 0-n are the idx of the row starts in values and column_idx and n+1 the TOTAL number of values
std::vector<int> values = {1,6,2,7,3,8,10,11,4,9,12,13,5}; // nonzero matrix values
std::vector<int> column_idx = {0,3,1,3,2,4,0,1,3,4,2,3,4}; // column indices of the values
std::vector<int> tmp = {0,0,0,0,0,0,0,0,0,0,0,0,0};
std::vector<int> sum(n);
// count nonzeros per row sum[] = {2,2,2,4,3}
for(size_t i = 0; i < row_idx.size()-1; ++i) {
sum[i] = std::count(tmp.begin() + row_idx[i], tmp.begin() + row_idx[i + 1], 0);
}
std::cout << "nnz_in_range = " << std::endl;
for (int i=0; i<n; i++)
{
std::cout << ' ' << sum[i];
}
return 0;
}
答案 0 :(得分:0)
稀疏矩阵可以明确包含零个条目。根据您的问题,不清楚是要计算头寸还是实际值。我会假设是前者,因为您的计数代码未使用values
。
然后,我们只需遵循CSR格式的定义,并获得如下所示的内容:
std::vector<int> count_positions_in_block(int block_begin, int block_size,
const std::vector<int>& row_idx, const std::vector<int>& column_idx)
{
std::vector<int> cnt(block_size, 0);
const auto block_end = block_begin + block_size;
assert(block_end < row_idx.size());
for (auto row = block_begin; row < block_end; ++row)
{
auto first = row_idx[row];
auto last = row_idx[row + 1];
assert(first <= last);
for (auto i = first; i < last; ++i)
if (column_idx[i] >= block_begin && column_idx[i] < block_end)
++cnt[row - block_begin];
}
return cnt;
}
auto nnz1 = count_positions_in_block(0, 2, row_idx, column_idx);
// nnz1 = [1, 1]
auto nnz2 = count_positions_in_block(2, 3, row_idx, column_idx);
// nnz2 = [2, 2, 3]
可以使用std::count_if
重写它:
std::vector<int> count_positions_in_block(int block_begin, int block_size,
const std::vector<int>& row_idx, const std::vector<int>& column_idx)
{
std::vector<int> cnt(block_size, 0);
const auto block_end = block_begin + block_size;
assert(block_end < row_idx.size());
const auto is_in_block = [&](auto col)
{ return (col >= block_begin && col < block_end); };
for (auto row = block_begin; row < block_end; ++row)
{
auto first = row_idx[row];
auto last = row_idx[row + 1];
assert(first <= last);
const auto cib = column_idx.begin();
cnt[row - block_begin] = std::count_if(
cib + first, cib + last, is_in_block);
}
return cnt;
}