I am trying to build a block tridiagonal matrix in Fortran. Now I have this piece of code that would deal with just the matrices that are placed in the main diagonal of the A_matrix
, one new matrix for every step in i
.
do i = gs+1, total_mesh_points
start_line = (3*i)-2
start_colu = (3*i)-2
final_line = (3*i)
final_colu = (3*i)
do ii = 1, 3
do jj = 1, 3
A_matrix(start_line:final_line,start_colu:final_colu) = &
impflux(ii,jj)
end do
end do
end do
Here my A_matrix(i,j)
is a big matrix that will receive another three by three matrix (impflux
) in its main diagonal. Note that for each step in i
I will have a new impflux
matrix that needs to be positioned in the main diagonal of the A_matrix
.
I can't think in a more simple solution for this problem. How people usually build block diagonal matrices in Fortran ?
答案 0 :(得分:3)
这是构建块三对角矩阵的一种方法。我不确定在一些着名的库之外是否有通常的方式。这是一个程序,我会把它交给你把它变成一个函数。
PROGRAM test
USE iso_fortran_env
IMPLICIT NONE
INTEGER :: k ! submatrix size
INTEGER :: n ! number of submatrices along main diagonal
INTEGER :: ix ! loop index
! the submatrices, a (lower diagonal) b (main diagonal) c (upper diagonal)
REAL(real64), DIMENSION(:,:,:), ALLOCATABLE :: amx, bmx, cmx
! the block tridiagonal matrix
REAL(real64), DIMENSION(:,:), ALLOCATABLE :: mat_a
k = 3 ! set these values as you wish
n = 4
ALLOCATE(amx(n-1,k,k), bmx(n,k,k), cmx(n-1,k,k))
ALLOCATE(mat_a(n*k,n*k))
mat_a = 0.0
! populate these as you wish
amx = 1.0
bmx = 2.0
cmx = 3.0
! first the lower diagonal
DO ix = 1,k*(n-1),k
mat_a(ix+k:ix+2*k-1,ix:ix+k-1) = amx(CEILING(REAL(ix)/REAL(k)),:,:)
END DO
! now the main diagonal
DO ix = 1,k*n,k
mat_a(ix:ix+k-1,ix:ix+k-1) = bmx(CEILING(REAL(ix)/REAL(k)),:,:)
END DO
! finally the upper diagonal
DO ix = 1,k*(n-1),k
mat_a(ix:ix+k-1,ix+k:ix+2*k-1) = cmx(CEILING(REAL(ix)/REAL(k)),:,:)
END DO
END PROGRAM test
请注意,这里没有任何错误检查,我只做了一些测试。
一个明显的替代方案是仅在mat_a
行循环,在同一次迭代中插入amx
,bmx
,cmx
,但这需要特殊的处理第一次和最后一次迭代,可能看起来更复杂。至于性能,如果对你进行一些测试很重要。
另请注意,这会产生密集的矩阵。如果矩阵变得非常大,那么只存储对角元素的方法可能更有用。这使我们走向它们的衍生类型和操作,这是另一个问题。