如何解决使用对象检测API训练自定义模型时遇到的OOM错误?

时间:2018-08-31 10:37:26

标签: tensorflow

我是深度学习领域的新宠,并且正在按照该教程来构建自己的自定义模型,该模型可以检测办公室中的其他人:

https://www.youtube.com/watch?v=Rgpfk6eYxJA&t=821s

除了使用CPU训练模型外,我已完成所有步骤。

我的机器的规格是: i7-16GB内存 GPU:3GB的1060ti(GTX)(但在使用GPU时我也遇到相同的OOM错误)

错误日志如下:

2018-08-31 15:12:18.771459: I T:\src\github\tensorflow\tensorflow\core\kernels\data\shuffle_dataset_op.cc:97] Filling up shuffle buffer (this may take a while): 2017 of 2048
2018-08-31 15:12:20.295718: I T:\src\github\tensorflow\tensorflow\core\kernels\data\shuffle_dataset_op.cc:135] Shuffle buffer filled.
2018-08-31 15:12:54.152195: W T:\src\github\tensorflow\tensorflow\core\framework\op_kernel.cc:1275] OP_REQUIRES failed at cast_op.cc:66 : Resource exhausted: OOM when allocating tensor with shape[1,3456,5184,3] and type float on /job:localhost/replica:0/task:0/device:CPU:0 by allocator cpu
2018-08-31 15:12:54.152210: W T:\src\github\tensorflow\tensorflow\core\framework\op_kernel.cc:1275] OP_REQUIRES failed at cast_op.cc:66 : Resource exhausted: OOM when allocating tensor with shape[1,3456,5184,3] and type float on /job:localhost/replica:0/task:0/device:CPU:0 by allocator cpu
2018-08-31 15:12:54.252864: W T:\src\github\tensorflow\tensorflow\core\framework\op_kernel.cc:1275] OP_REQUIRES failed at cast_op.cc:66 : Resource exhausted: OOM when allocating tensor with shape[1,3456,5184,3] and type float on /job:localhost/replica:0/task:0/device:CPU:0 by allocator cpu
2018-08-31 15:12:54.520021: W T:\src\github\tensorflow\tensorflow\core\framework\op_kernel.cc:1275] OP_REQUIRES failed at cast_op.cc:66 : Resource exhausted: OOM when allocating tensor with shape[1,3456,5184,3] and type float on /job:localhost/replica:0/task:0/device:CPU:0 by allocator cpu
2018-08-31 15:12:54.796566: W T:\src\github\tensorflow\tensorflow\core\framework\op_kernel.cc:1275] OP_REQUIRES failed at cast_op.cc:66 : Resource exhausted: OOM when allocating tensor with shape[1,3456,5184,3] and type float on /job:localhost/replica:0/task:0/device:CPU:0 by allocator cpu
2018-08-31 15:12:55.234806: W T:\src\github\tensorflow\tensorflow\core\framework\op_kernel.cc:1275] OP_REQUIRES failed at cast_op.cc:66 : Resource exhausted: OOM when allocating tensor with shape[1,3456,5184,3] and type float on /job:localhost/replica:0/task:0/device:CPU:0 by allocator cpu
2018-08-31 15:12:55.249497: W T:\src\github\tensorflow\tensorflow\core\framework\op_kernel.cc:1275] OP_REQUIRES failed at cast_op.cc:66 : Resource exhausted: OOM when allocating tensor with shape[1,3456,5184,3] and type float on /job:localhost/replica:0/task:0/device:CPU:0 by allocator cpu

我为此使用的预训练模型是:faster_rcnn_inception_v2_coco_2018_01_28

配置文件(faster_rcnn_inception_v2_pets.config)为:

# Faster R-CNN with Inception v2, configured for Oxford-IIIT Pets Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.

model {
  faster_rcnn {
num_classes: 15
image_resizer {
  keep_aspect_ratio_resizer {
    min_dimension: 600
    max_dimension: 1024
  }
}
feature_extractor {
  type: 'faster_rcnn_inception_v2'
  first_stage_features_stride: 16
}
first_stage_anchor_generator {
  grid_anchor_generator {
    scales: [0.25, 0.5, 1.0, 2.0]
    aspect_ratios: [0.5, 1.0, 2.0]
    height_stride: 16
    width_stride: 16
  }
}
first_stage_box_predictor_conv_hyperparams {
  op: CONV
  regularizer {
    l2_regularizer {
      weight: 0.0
    }
  }
  initializer {
    truncated_normal_initializer {
      stddev: 0.01
    }
  }
}
first_stage_nms_score_threshold: 0.0
first_stage_nms_iou_threshold: 0.7
first_stage_max_proposals: 300
first_stage_localization_loss_weight: 2.0
first_stage_objectness_loss_weight: 1.0
initial_crop_size: 14
maxpool_kernel_size: 2
maxpool_stride: 2
second_stage_box_predictor {
  mask_rcnn_box_predictor {
    use_dropout: false
    dropout_keep_probability: 1.0
    fc_hyperparams {
      op: FC
      regularizer {
        l2_regularizer {
          weight: 0.0
        }
      }
      initializer {
        variance_scaling_initializer {
          factor: 1.0
          uniform: true
          mode: FAN_AVG
        }
      }
    }
  }
}
second_stage_post_processing {
  batch_non_max_suppression {
    score_threshold: 0.0
    iou_threshold: 0.6
    max_detections_per_class: 100
    max_total_detections: 300
  }
  score_converter: SOFTMAX
}
second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0
  }
}

train_config: {
  batch_size: 1
  optimizer {
    momentum_optimizer: {
      learning_rate: {
        manual_step_learning_rate {
          initial_learning_rate: 0.0002
          schedule {
            step: 900000
            learning_rate: .00002
          }
          schedule {
            step: 1200000
            learning_rate: .000002
          }
        }
       }
  momentum_optimizer_value: 0.9
}
use_moving_average: false
  }
   gradient_clipping_by_norm: 10.0
  fine_tune_checkpoint: 
  "C:/tensorflow1/models/research/object_detection/faster_rcnn_inception_v2_coco_2018_01_28/model.ckpt"
  from_detection_checkpoint: true
  load_all_detection_checkpoint_vars: true
  # Note: The below line limits the training process to 200K steps, which we
  # empirically found to be sufficient enough to train the pets dataset.This
  # effectively bypasses the learning rate schedule (the learning rate will
  # never decay). Remove the below line to train indefinitely.
  num_steps: 200000
  data_augmentation_options {
    random_horizontal_flip {
    }
      }
    }


    train_input_reader: {
  tf_record_input_reader {
     input_path: "C:/tensorflow1/models/research/object_detection/train.record"
  }
  label_map_path: "C:/tensorflow1/models/research/object_detection/training/labelmap.pbtxt"
}

eval_config: {
  metrics_set: "coco_detection_metrics"
  num_examples: 3
}

eval_input_reader: {
  tf_record_input_reader {
    input_path: "C:/tensorflow1/models/research/object_detection/test.record"
  }
  label_map_path: "C:/tensorflow1/models/research/object_detection/training/labelmap.pbtxt"
  shuffle: false
  num_readers: 1
  }

0 个答案:

没有答案