我已经在Fortran中编写了以下代码,以使用r2r(实数到实数)类型FFTW sin变换来求解泊松方程。在此代码中,首先我完成了数学函数27*sin(3x)*sin(3y)*sin(3z)
的常规FFTW即r2c(实数到复数)类型,然后将其除以27(3 * 3 + 3 * 3 + 3 * 3)以计算二阶导数输入功能。输入函数振幅的3-D图显示了正确的振幅。amplitude along z-axis against x-,y- co-ordinate。
然后,c2r(复杂到实数)类型的逆FFTW会重新生成输入函数,但幅度现在减小到1,如3-D图2中所示。这表示我的Poisson方程求解器代码在正常FFTW的情况下可以正常工作。
Program Derivative
! To run this code: gcc dst_3d.c -c -std=c99 && gfortran derivative.f95 dst_3d.o -lfftw3 && ./a.out
implicit none
include "fftw3.f"
integer ( kind = 4 ), parameter :: Nx = 64
integer ( kind = 4 ), parameter :: Ny = 64
integer ( kind = 4 ), parameter :: Nz = 64
real ( kind = 8 ), parameter :: pi=3.14159265358979323846d0
integer ( kind = 4 ) i,j,k
real ( kind = 8 ) Lx,Ly,Lz,dx,dy,dz,kx,ky,kz
real ( kind = 8 ) x(Nx),y(Ny),z(Nz)
real ( kind = 8 ) in_dst(Nx,Ny,Nz),out_dst(Nx,Ny,Nz) ! DST
real ( kind = 8 ) in_k_dst(Nx,Ny,Nz),out_k_dst(Nx,Ny,Nz) ! DST
real ( kind = 8 ) in_dft(Nx,Ny,Nz),out_dft(Nx,Ny,Nz) ! DFT
complex ( kind = 8 ) in_k_dft(Nx/2+1,Ny,Nz),out_k_dft(Nx/2+1,Ny,Nz) ! DFT
integer ( kind = 8 ) plan_forward,plan_backward ! DFT
! System Size.
Lx = 2.0d0*pi; Ly = 2.0d0*pi; Lz = 2.0d0*pi
! Grid Resolution.
dx = Lx/dfloat(Nx); dy = Ly/dfloat(Ny); dz = Lz/dfloat(Nz)
! =================================== INPUT ===========================================
! Initial Profile Details.
do i = 1, Nx
x(i) = dfloat(i-1)*dx
do j = 1, Ny
y(j) = dfloat(j-1)*dy
do k = 1, Nz
z(k) = dfloat(k-1)*dz
in_dst(i,j,k) = 27.0d0*sin(3.0d0*x(i))*sin(3.0d0*y(j))*sin(3.0d0*z(k))
in_dft(i,j,k) = in_dst(i,j,k)
write(10,*) x(i), y(j), z(k), in_dft(i,j,k)
enddo
enddo
enddo
! =================================== 3D DFT ===========================================
call dfftw_plan_dft_r2c_3d_ (plan_forward, Nx, Ny, Nz, in_dft, in_k_dft, FFTW_ESTIMATE)
call dfftw_execute_ (plan_forward)
call dfftw_destroy_plan_ (plan_forward)
do i = 1, Nx/2+1
do j = 1, Ny/2
do k = 1, Nz/2
kx = 2.0d0*pi*dfloat(i-1)/Lx
ky = 2.0d0*pi*dfloat(j-1)/Ly
kz = 2.0d0*pi*dfloat(k-1)/Lz
out_k_dft(i,j,k) = in_k_dft(i,j,k)/(kx*kx+ky*ky+kz*kz)
enddo
do k = Nz/2+1, Nz
kx = 2.0d0*pi*dfloat(i-1)/Lx
ky = 2.0d0*pi*dfloat(j-1)/Ly
kz = 2.0d0*pi*dfloat((k-1)-Nz)/Lz
out_k_dft(i,j,k) = in_k_dft(i,j,k)/(kx*kx+ky*ky+kz*kz)
enddo
enddo
do j = Ny/2+1, Ny
do k = 1, Nz/2
kx = 2.0d0*pi*dfloat(i-1)/Lx
ky = 2.0d0*pi*dfloat((j-1)-Ny)/Ly
kz = 2.0d0*pi*dfloat(k-1)/Lz
out_k_dft(i,j,k) = in_k_dft(i,j,k)/(kx*kx+ky*ky+kz*kz)
enddo
do k = Nz/2+1, Nz
kx = 2.0d0*pi*dfloat(i-1)/Lx
ky = 2.0d0*pi*dfloat((j-1)-Ny)/Ly
kz = 2.0d0*pi*dfloat((k-1)-Nz)/Lz
out_k_dft(i,j,k) = in_k_dft(i,j,k)/(kx*kx+ky*ky+kz*kz)
enddo
enddo
enddo
out_k_dft(1,1,1) = in_k_dft(1,1,1)
call dfftw_plan_dft_c2r_3d_ (plan_backward, Nx, Ny, Nz, out_k_dft, out_dft, FFTW_ESTIMATE)
call dfftw_execute_ (plan_backward)
call dfftw_destroy_plan_ (plan_backward)
do i = 1, Nx
do j = 1, Ny
do k = 1, Nz
out_dft(i,j,k) = out_dft(i,j,k)/dfloat(Nx*Ny*Nz)
write(20,*) x(i), y(j), z(k), out_dft(i,j,k)
enddo
enddo
enddo
! =================================== 3D DST ===========================================
call Forward_FFT(Nx, Ny, Nz, in_dst, in_k_dst)
do k = 1, Nz
do j = 1, Ny/2
do i = 1, Nx/2
kz = 2.0d0*pi*dfloat((k-1))/Lz
ky = 2.0d0*pi*dfloat((j-1))/Ly
kx = 2.0d0*pi*dfloat((i-1))/Lx
out_k_dst(i,j,k) = in_k_dst(i,j,k)/(kx*kx+ky*ky+kz*kz)
enddo
do i = Nx/2+1, Nx
kz = 2.0d0*pi*dfloat((k-1))/Lz
ky = 2.0d0*pi*dfloat((j-1))/Ly
kx = 2.0d0*pi*dfloat(Nx-(i-1))/Lx
out_k_dst(i,j,k) = in_k_dst(i,j,k)/(kx*kx+ky*ky+kz*kz)
enddo
enddo
do j = Ny/2+1, Ny
do i = 1, Nx/2
kz = 2.0d0*pi*dfloat((k-1))/Lz
ky = 2.0d0*pi*dfloat(Ny-(j-1))/Ly
kx = 2.0d0*pi*dfloat((i-1))/Lx
out_k_dst(i,j,k) = in_k_dst(i,j,k)/(kx*kx+ky*ky+kz*kz)
enddo
do i = Nx/2+1, Nx
kz = 2.0d0*pi*dfloat((k-1))/Lz
ky = 2.0d0*pi*dfloat(Ny-(j-1))/Ly
kx = 2.0d0*pi*dfloat(Nx-(i-1))/Lx
out_k_dst(i,j,k) = in_k_dst(i,j,k)/(kx*kx+ky*ky+kz*kz)
enddo
enddo
enddo
out_k_dst(1,1,1) = in_k_dst(1,1,1)
call Backward_FFT(Nx, Ny, Nz, out_k_dst, out_dst)
do i = 1, Nx
do j = 1, Ny
do k = 1, Nz
out_dst(i,j,k) = out_dst(i,j,k)/dfloat(8*Nx*Ny*Nz)
write(30,*) x(i), y(j), z(k), out_dst(i,j,k)
enddo
enddo
enddo
end program Derivative
! ================================== FFTW SUBROUTINES
====================================================
! ================================================================= !
! Wrapper Subroutine to call forward fftw c functions for 3d arrays !
! ================================================================= !
subroutine Forward_FFT(Nx, Ny, Nz, in, out)
implicit none
integer ( kind = 4 ) Nx,Ny,Nz,i,j,k
real ( kind = 8 ) in(Nx, Ny, Nz),out(Nx, Ny, Nz),dum(Nx*Ny*Nz)
do i = 1, Nx
do j = 1, Ny
do k = 1, Nz
dum(((i-1)*Ny+(j-1))*Nz+k) = in(i,j,k)
enddo
enddo
enddo
call dst3f(Nx, Ny, Nz, dum)
do i = 1, Nx
do j = 1, Ny
do k = 1, Nz
out(i,j,k) = dum(((i-1)*Ny+(j-1))*Nz+k)
enddo
enddo
enddo
end subroutine
! ================================================================== !
! Wrapper Subroutine to call backward fftw c functions for 3d arrays !
! ================================================================== !
subroutine Backward_FFT(Nx, Ny, Nz, in, out)
implicit none
integer ( kind = 4 ) Nx,Ny,Nz,i,j,k
real ( kind = 8 ) in(Nx, Ny, Nz),out(Nx, Ny, Nz),dum(Nx*Ny*Nz)
do i = 1, Nx
do j = 1, Ny
do k = 1, Nz
dum(((i-1)*Ny+(j-1))*Nz+k) = in(i,j,k)
enddo
enddo
enddo
call dst3b(Nx, Ny, Nz, dum)
do i = 1, Nx
do j = 1, Ny
do k = 1, Nz
out(i,j,k) = dum(((i-1)*Ny+(j-1))*Nz+k)
enddo
enddo
enddo
end subroutine
! ==================================================================
此代码使用下面的C-wrapper计算正向3D FFTW正弦变换和反向3D FFTW正弦变换,
#include <fftw3.h>
int dst3f_(int *n0, int *n1, int *n2, double *in3cs)
{
double *out3cs;
out3cs = (double*) fftw_malloc(sizeof(double) * (*n0) * (*n1) * (*n2));
fftw_plan p3cs;
p3cs = fftw_plan_r2r_3d(*n0, *n1, *n2, in3cs, out3cs, FFTW_RODFT10, FFTW_RODFT10, FFTW_RODFT10, FFTW_ESTIMATE);
fftw_execute(p3cs);
fftw_destroy_plan(p3cs);
for(int i0=0;i0<*n0;i0++) {
for(int i1=0;i1<*n1;i1++) {
for(int i2=0;i2<*n2;i2++) {
in3cs[(i0*(*n1)+i1)*(*n2)+i2] = out3cs[(i0*(*n1)+i1)*(*n2)+i2];
}
}
}
return 0;
}
int dst3b_(int *n0, int *n1, int *n2, double *in3cs)
{
double *out3cs;
out3cs = (double*) fftw_malloc(sizeof(double) * (*n0) * (*n1) * (*n2));
fftw_plan p3cs;
p3cs = fftw_plan_r2r_3d(*n0, *n1, *n2, in3cs, out3cs, FFTW_RODFT01, FFTW_RODFT01, FFTW_RODFT01, FFTW_ESTIMATE);
fftw_execute(p3cs);
fftw_destroy_plan(p3cs);
for(int i0=0;i0<*n0;i0++) {
for(int i1=0;i1<*n1;i1++) {
for(int i2=0;i2<*n2;i2++) {
in3cs[(i0*(*n1)+i1)*(*n2)+i2] = out3cs[(i0*(*n1)+i1)*(*n2)+i2];
}
}
}
return 0;
}
然后我现在尝试使用正弦变换FFTW(即r2r(实数到实数)类型)求解相同的泊松方程。当我对输出进行3-D绘制时,如3所示,现在振幅减小到小于1。我找不到代码的错误在哪里,因此该振幅减小了。正弦变换的情况。
答案 0 :(得分:1)
使用实数到实数转换来求解泊松方程非常吸引人,因为它允许使用各种边界条件。但是,这些感应点并不完全对应于周期性边界条件所考虑的那些。
对于周期性边界条件,感应点位于规则的网格上,例如0,1 ..,n-1。如果单位晶胞的大小为Lx,则点之间的间距为Lx / n。故事结束。
现在,让我们考虑一下边界条件,以便将DST III用于正向变换,即标志RODFT01。如图there所示,在documentation of FFTW中发出信号:
FFTW_RODFT01(DST-III):j = -1左右为奇数,j = n-1左右为奇数。
感应点仍为0,1 ..,n-1。如果长度为Lx,则间距仍为dx = Lx /(n)。 但是DST III的输入函数和基本函数在j = -1左右甚至在j = n-1左右都是奇数。这解释了幅度的差异:
in_dst(i,j,k) = 27.0d0*sin(3.0d0*x(i))*sin(3.0d0*y(j))*sin(3.0d0*z(k))
实际上,此输入在i = -1附近甚至在i = n-1附近都不是奇数。在i = 0和i = n周围都是奇数。因此,以下操作可能会有所帮助:
FFTW_RODFT00 (DST-I): odd around j=-1 and odd around j=n.
。最后,可能需要对输出进行缩放,因为FFTW transforms are not normalized.对于DST-1,FFTW_RODFT00为N=2(n+1)
。 VladimirF的建议无疑是一个很好的建议。确实,虽然测试单个频率是理解和实现算法的理想选择,但最终测试必须涵盖多个频率,以确保程序可靠。