Tensorflow:加载使用tf.layers API训练的模型时出错

时间:2018-08-29 18:40:16

标签: tensorflow

我之前曾问过这个问题,但未能找到帮助。我有一个使用Tensorflow训练的模型,正在尝试加载。我可以加载仅使用tf.nn.xxxx函数编写的模型,但是我不能使用tf.layers编写的任何东西都可以加载。我花了几个月的时间试图找到解决办法,但似乎没有人在网上遇到相同的问题,这使我相信我在做一些非常愚蠢的事情。非常感谢您在此阶段提供的帮助

当我尝试在推理时间内通过tf.layers模型运行数据时,出现以下错误消息:

FailedPreconditionError (see above for traceback): Attempting to use uninitialized value Level3Decoding/conv3/batch_normalization/beta_1
     [[Node: Level3Decoding/conv3/batch_normalization/beta_1/read = Identity[T=DT_FLOAT, _class=["loc:@Level3Decoding/conv3/batch_normalization/cond/FusedBatchNorm_3/Switch_2"], _device="/job:localhost/replica:0/task:0/device:GPU:0"](Level3Decoding/conv3/batch_normalization/beta_1)]]
     [[Node: Level1Decoding/conv2d/BiasAdd_1/_811 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_1214_Level1Decoding/conv2d/BiasAdd_1", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]

我正在训练一个用于细分的网络,其定义如下:

def uNet2D(x, REGULARIZER, KERNEL_SIZE, is_training):
regularizer = tf.contrib.layers.l2_regularizer(scale=REGULARIZER)

#L1 encode
with tf.variable_scope('Level1Encoding'):
    with tf.variable_scope('conv1'):
        conv1=tf.layers.conv2d(x,64,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same', name='conv1')
        conv1  = tf.layers.batch_normalization(
        inputs=conv1,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = is_training)
        conv1 = tf.nn.relu(conv1)

    with tf.variable_scope('conv2'):
        conv2=tf.layers.conv2d(conv1,64,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv2  = tf.layers.batch_normalization(
        inputs=conv2,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = is_training)
        conv2 = tf.nn.relu(conv2)
    with tf.variable_scope('conv3'):
        conv3=tf.layers.conv2d(conv2,64,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv3  = tf.layers.batch_normalization(
        inputs=conv3,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = is_training)
        conv3 = tf.nn.relu(conv3)

    conv3mp=tf.layers.max_pooling2d(conv3,2,2,padding='same')

with tf.variable_scope('Level2Encoding'):
    with tf.variable_scope('conv1'):
        conv4=tf.layers.conv2d(conv3mp,128,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv4  = tf.layers.batch_normalization(
        inputs=conv4,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = is_training)
        conv4 = tf.nn.relu(conv4)

    with tf.variable_scope('conv2'):
        conv5=tf.layers.conv2d(conv4,128,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv5  = tf.layers.batch_normalization(
        inputs=conv5,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = is_training)
        conv5 = tf.nn.relu(conv5)

    with tf.variable_scope('conv3'):
        conv6=tf.layers.conv2d(conv5,128,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv6  = tf.layers.batch_normalization(
        inputs=conv6,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = is_training)
        conv6 = tf.nn.relu(conv6)

    conv6mp=tf.layers.max_pooling2d(conv6,2,2,padding='same')

with tf.variable_scope('Level3Encoding'):
    with tf.variable_scope('conv1'):
        conv7=tf.layers.conv2d(conv6mp,256,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv7  = tf.layers.batch_normalization(
        inputs=conv7,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = is_training)
        conv7 = tf.nn.relu(conv7)

    with tf.variable_scope('conv2'):    
        conv8=tf.layers.conv2d(conv7,256,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv8  = tf.layers.batch_normalization(
        inputs=conv8,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = is_training)
        conv8 = tf.nn.relu(conv8)

    with tf.variable_scope('conv3'):
        conv9=tf.layers.conv2d(conv8,256,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv9  = tf.layers.batch_normalization(
        inputs=conv9,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = is_training)
        conv9 = tf.nn.relu(conv9)

    conv9mp=tf.layers.max_pooling2d(conv9,2,2,padding='same')

with tf.variable_scope('Level4Encoding'):
    with tf.variable_scope('conv1'):
        conv10=tf.layers.conv2d(conv9mp,512,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv10  = tf.layers.batch_normalization(
        inputs=conv10,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = is_training)
        conv10 = tf.nn.relu(conv10)

    with tf.variable_scope('conv2'):
        conv11=tf.layers.conv2d(conv10,512,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv11  = tf.layers.batch_normalization(
        inputs=conv11,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = is_training)
        conv11 = tf.nn.relu(conv11)

    with tf.variable_scope('conv3'):
        conv12=tf.layers.conv2d(conv11,512,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv12  = tf.layers.batch_normalization(
        inputs=conv12,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = is_training)
        conv12 = tf.nn.relu(conv12)

    conv12mp=tf.layers.max_pooling2d(conv12,2,2,padding='same')


with tf.variable_scope('Level5'):
    with tf.variable_scope('conv1'):
        conv13=tf.layers.conv2d(conv12mp,1024,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv13  = tf.layers.batch_normalization(
        inputs=conv13,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = is_training)
        conv13 = tf.nn.relu(conv13)

    with tf.variable_scope('conv2'):
        conv14=tf.layers.conv2d(conv13,1024,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv14  = tf.layers.batch_normalization(
        inputs=conv14,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = is_training)
        conv14 = tf.nn.relu(conv14)

    with tf.variable_scope('conv3'):
        conv15=tf.layers.conv2d(conv14,1024,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv15  = tf.layers.batch_normalization(
        inputs=conv15,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = is_training)
        conv15 = tf.nn.relu(conv15)

    conv15=tf.layers.conv2d_transpose(conv15,512,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, strides=(2,2),padding='same')

with tf.variable_scope('Level4Decoding'):
    inp     = tf.concat([conv12,conv15],3)
    with tf.variable_scope('conv1'):
        conv16  = tf.layers.conv2d(inp,256,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv16  = tf.layers.batch_normalization(
                inputs=conv16,
                axis=-1,
                momentum=0.999,
                epsilon=0.001,
                center=True,
                scale=True,
                training = is_training)
        conv16 = tf.nn.relu(conv16)

    with tf.variable_scope('conv2'):
        conv17=tf.layers.conv2d(conv16,256,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv17  = tf.layers.batch_normalization(
                inputs=conv17,
                axis=-1,
                momentum=0.999,
                epsilon=0.001,
                center=True,
                scale=True,
                training = is_training)
        conv17 = tf.nn.relu(conv17)

    with tf.variable_scope('conv3'):
        conv18=tf.layers.conv2d(conv17,256,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv18  = tf.layers.batch_normalization(
                inputs=conv18,
                axis=-1,
                momentum=0.999,
                epsilon=0.001,
                center=True,
                scale=True,
                training = is_training)
        conv18 = tf.nn.relu(conv18)

    conv18=tf.layers.conv2d_transpose(conv18,256,(KERNEL_SIZE, KERNEL_SIZE),strides=(2,2), kernel_regularizer=regularizer, padding='same')

with tf.variable_scope('Level3Decoding'):
    inp     = tf.concat([conv9,conv18],3)
    with tf.variable_scope('conv1'):
        conv19  = tf.layers.conv2d(inp,128,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv19  = tf.layers.batch_normalization(
                inputs=conv19,
                axis=-1,
                momentum=0.999,
                epsilon=0.001,
                center=True,
                scale=True,
                training = is_training)
        conv19 = tf.nn.relu(conv19)

    with tf.variable_scope('conv2'):
        conv20=tf.layers.conv2d(conv19,128,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv20  = tf.layers.batch_normalization(
                inputs=conv20,
                axis=-1,
                momentum=0.999,
                epsilon=0.001,
                center=True,
                scale=True,
                training = is_training)
        conv20 = tf.nn.relu(conv20)

    with tf.variable_scope('conv3'):
        conv21=tf.layers.conv2d(conv20,128,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv21  = tf.layers.batch_normalization(
                inputs=conv21,
                axis=-1,
                momentum=0.999,
                epsilon=0.001,
                center=True,
                scale=True,
                training = is_training)
        conv21 = tf.nn.relu(conv21)

    conv21=tf.layers.conv2d_transpose(conv21,128,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, strides=(2,2),padding='same')

with tf.variable_scope('Level2Decoding'):
    inp     = tf.concat([conv6,conv21],3)
    with tf.variable_scope('conv1'):
        conv22  = tf.layers.conv2d(inp,64,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv22  = tf.layers.batch_normalization(
                inputs=conv22,
                axis=-1,
                momentum=0.999,
                epsilon=0.001,
                center=True,
                scale=True,
                training = is_training)
        conv22 = tf.nn.relu(conv22)

    with tf.variable_scope('conv2'):
        conv23  = tf.layers.conv2d(conv22,128,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv23  = tf.layers.batch_normalization(
                inputs=conv23,
                axis=-1,
                momentum=0.999,
                epsilon=0.001,
                center=True,
                scale=True,
                training = is_training)
        conv23 = tf.nn.relu(conv23)

    with tf.variable_scope('conv3'):
        conv24=tf.layers.conv2d(conv23,128,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv24  = tf.layers.batch_normalization(
                inputs=conv24,
                axis=-1,
                momentum=0.999,
                epsilon=0.001,
                center=True,
                scale=True,
                training = is_training)
        conv24 = tf.nn.relu(conv24)

    conv24=tf.layers.conv2d_transpose(conv24,64,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, strides=(2,2),padding='same')

with tf.variable_scope('Level1Decoding'):
    inp     = tf.concat([conv3,conv24],3)
    with tf.variable_scope('conv1'):
        conv25  = tf.layers.conv2d(inp,64,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv25  = tf.layers.batch_normalization(
                inputs=conv25,
                axis=-1,
                momentum=0.999,
                epsilon=0.001,
                center=True,
                scale=True,
                training = is_training)
        conv25 = tf.nn.relu(conv25)

    with tf.variable_scope('conv2'):
        conv26  = tf.layers.conv2d(conv25,128,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv26  = tf.layers.batch_normalization(
                inputs=conv25,
                axis=-1,
                momentum=0.999,
                epsilon=0.001,
                center=True,
                scale=True,
                training = is_training)
        conv26 = tf.nn.relu(conv26)

    with tf.variable_scope('conv3'):
        conv27  = tf.layers.conv2d(conv26,128,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv27  = tf.layers.batch_normalization(
                inputs=conv26,
                axis=-1,
                momentum=0.999,
                epsilon=0.001,
                center=True,
                scale=True,
                training = is_training)
        conv27=tf.nn.relu(conv27)

    convOUT = tf.layers.conv2d(conv27,1,(1,1),  kernel_regularizer=regularizer, padding='same')
    return convOUT

我正在使用以下脚本对其进行训练:

    os.chdir(launch)

timestr = time.strftime("%Y%m%d-%H%M%S")
outDir  = './TumorOUT_no_core/' + timestr
os.mkdir(outDir)

graphDir = './graphs/' + timestr
os.mkdir(graphDir)
os.mkdir(graphDir + '/training/')
os.mkdir(graphDir + '/testing/')


with open(outDir + '/hyperparams.txt', 'w+') as f: 
    for key, value in hypers.items():
        f.write('%s:%s\n' % (key, value))


X = tf.placeholder(tf.float32, shape=[None, None, None, NUM_CHANNELS],   name='X')  #input
Y = tf.placeholder(tf.float32, shape = [None, None, None, 1], name='Y')  #'labels'
is_training = tf.placeholder(tf.bool, name='is_training')

def run_model():

        valCosts=[]
        GLOBAL_STEP = 0
        minLoss=10000000000
        pred = uNet2D(X, BETA, KERNEL_SIZE, is_training)
        cost = tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.reshape(Y,[-1]),logits=tf.reshape(pred,[-1])))

        #with tf.variable_scope('prediction') as scope:
        #    t_pred = uNet2D(X, BETA, KERNEL_SIZE)  
        #    t_cost = tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.reshape(Y,[-1]),logits=tf.reshape(t_pred,[-1])))
        #    scope.reuse_variables()
        #    v_pred = uNet2D(X, BETA, KERNEL_SIZE)  
        #    v_cost = tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.reshape(Y,[-1]),logits=tf.reshape(v_pred,[-1])))

        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(update_ops):
        # this with statement updates the BN parameters if BN is being used
            optimizer = tf.train.AdamOptimizer(learning_rate=LR).minimize(cost)

        with tf.name_scope("training"):
            tf.summary.scalar("training_cost", cost, collections=['training'])
            for var in tf.trainable_variables():
                tf.summary.histogram(var.op.name , var, collections=['training'])

        with tf.name_scope("validation"):
            tf.summary.scalar("validation_cost", cost, collections=['validation'])
            #tf.summary.image("VALIDATION_X",X, collections=['validation'])
            #tf.summary.image("VALIDATION_Y",Y, collections=['validation'])
            #tf.summary.image("VALIDATION_PRED", v_pred, collections=['validation'])


        saver = tf.train.Saver()

        with tf.Session() as sess:
            train_merge      = tf.summary.merge_all(key='training')
            validation_merge = tf.summary.merge_all(key='validation')
            train_writer = tf.summary.FileWriter( graphDir + '/training/', sess.graph)
            validation_writer = tf.summary.FileWriter( graphDir + '/testing/', sess.graph)
            print('Beginning Session!')
            sess.run(tf.global_variables_initializer())
            print('Running Model!')

            while GLOBAL_STEP <= MAX_ITER:

                if GLOBAL_STEP % NUM_STEPS != 0:
                    x,y=training.drawBatch(BATCH_SIZE)
                    y=np.expand_dims(y,-1)
                    y[y>0]=1
                    flip = random.uniform(0,1)
                    if flip>0.5:
                        x = np.flip(x,2)
                        y = np.flip(y,2)
                    _, acc, c = sess.run([optimizer, train_merge, cost], feed_dict = {X: x, Y: y, is_training: 1})
                    train_writer.add_summary(acc, GLOBAL_STEP)
                    #train_writer.add_summary(summary, GLOBAL_STEP)
                else:
                    x,y=validation.drawBatch(BATCH_SIZE)
                    y=np.expand_dims(y,-1)
                    y[y>0]=1
                    acc, c = sess.run([validation_merge,cost], feed_dict = {X: x, Y: y, is_training: 0})
                    validation_writer.add_summary(acc, GLOBAL_STEP)
                    #validation_writer.add_summary(summary, GLOBAL_STEP)
                    #save_path=saver.save(sess, outDir + '/model')
                    print(c)
                    if c < minLoss:
                        save_path=saver.save(sess, outDir + '/model')
                        minLoss=c
                    valCosts.append(c)

                GLOBAL_STEP+=1
            g= open(graphDir+'/val.pickle', 'w+')   
            pickle.dump([valCosts], g)

run_model()

我尝试使用以下代码加载它,加载成功,但是似乎我无法正确初始化变量:

    launch=os.getcwd()

tf.reset_default_graph()
os.environ["CUDA_VISIBLE_DEVICES"]="0"

launch=os.getcwd()
testDir=launch + '/in_data/no_core/Validation/'

os.chdir(testDir)
testList  = glob.glob('*mat')


os.chdir(launch)
sess = tf.Session()
new_saver = tf.train.import_meta_graph(launch + '/TumorOUT_no_core/20180829-142646/model.meta')
new_saver.restore(sess,tf.train.latest_checkpoint(launch + '/TumorOUT_no_core/20180829-142646/'))



X = tf.placeholder(tf.float32, shape=[None, None, None, 2],   name='X')  #input
Y = tf.placeholder(tf.float32, shape = [None, None, None, 1], name='Y')  #'labels'
is_training = tf.placeholder(tf.bool, name='is_training')
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())

os.chdir(testDir)



pred = uNet2D(X, .1, 3,is_training)
print("Loaded Weights")


for i in testList:
    print(i)
    data=loadmat(i)
    mri=data['data']
    mri=mri[:,:,:,0:2]
    outt=np.zeros((mri.shape[0],mri.shape[1],mri.shape[2]))
    mri=(mri-np.mean(mri))/np.var(mri)
    mask=mri[:,:,:,0]>15
    mri=np.expand_dims(mri,0)
    roi=data['roi_mat']
    for z in range(mri.shape[3]):
        b1=sess.run(pred,feed_dict={X: mri[:,:,:,z,:],is_training:False})
        b=b1[0,:,:,0]
        b=sess.run(tf.nn.sigmoid(b))
        r=roi[:,:,z]
        r=r.astype(dtype=np.float32)
        outt[:,:,z]=b
    out={}
    out['out']= outt
    out['roi']= roi
    savemat('./matlab/'+i,out)

    print('done :)')

0 个答案:

没有答案