我正在使用tf.contrib.slim.nets.inception_v3
重写tf.layers
。不幸的是,新的tf.layers
模块不能与arg_scope
一起使用,因为它没有必要的装饰器。是否有更好的机制,我应该用它来设置图层的默认参数?或者我应该只为每个图层添加适当的参数并删除arg_scope
?
以下是使用arg_scope:
的示例with variable_scope.variable_scope(scope, 'InceptionV3', [inputs]):
with arg_scope(
[layers.conv2d, layers_lib.max_pool2d, layers_lib.avg_pool2d],
stride=1,
padding='VALID'):
答案 0 :(得分:2)
没有其他机制允许您在核心TensorFlow中定义默认值,因此您应该为每个图层指定参数。
例如,这段代码:
with slim.arg_scope([slim.fully_connected],
activation_fn=tf.nn.relu,
weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
weights_regularizer=tf.contrib.layers.l2_regularizer(scale=0.0005)):
x = slim.fully_connected(x, 800)
x = slim.fully_connected(x, 1000)
会变成:
x = tf.layers.dense(x, 800, activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
kernel_regularizer=tf.contrib.layers.l2_regularizer(scale=0.0005))
x = tf.layers.dense(x, 1000, activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
kernel_regularizer=tf.contrib.layers.l2_regularizer(scale=0.0005))
可替换地:
with tf.variable_scope('fc',
initializer=tf.truncated_normal_initializer(stddev=0.01)):
x = tf.layers.dense(x, 800, activation=tf.nn.relu,
kernel_regularizer=tf.contrib.layers.l2_regularizer(scale=0.0005))
x = tf.layers.dense(x, 1000, activation=tf.nn.relu,
kernel_regularizer=tf.contrib.layers.l2_regularizer(scale=0.0005))
确保阅读图层文档,以查看哪些初始值设定项默认为变量范围初始值设定项。例如,dense layer的kernel_initializer
使用变量范围初始值设定项,而bias_initializer
使用tf.zeros_initializer()
。
答案 1 :(得分:1)
您可以使用 tensorflow.contrib.framework 中的add_arg_scope,它会添加必要的修饰符,并使该功能可用于 arg_scope 。在tf.layers周围创建包装器。 requiredLayer ,并使用@add_arg_scope装饰它。
示例:
import tensorflow as tf
from tensorflow.contrib.framework import arg_scope
from tensorflow.contrib.framework import add_arg_scope
@add_arg_scope
def conv2d(inputs,filters,kernel_size,padding='VALID',activation=tf.nn.sigmoid):
print inputs
print filters
print kernel_size
print padding
print activation
return tf.layers.conv2d(
inputs=inputs,
filters=filters,
kernel_size=kernel_size,
padding=padding,
activation=activation)
inp = tf.placeholder(tf.float32,[None,224,224,3])
print '--------net1-------------'
with arg_scope([conv2d],padding='SAME',activation=tf.nn.relu):
net = conv2d(inputs=inp,filters=64,kernel_size=[1,1])
#print net
#net=net
print '--------net2-------------'
net2 = conv2d(inputs=inp,filters=64,kernel_size=[1,1])