尝试恢复在tf.layers API中创建的模型时出现FailedPreconditionError

时间:2018-05-25 00:29:07

标签: tensorflow

我正在尝试使用tf.layers API实现uNet。任务是图像分割。下面,我将提供(按顺序):错误消息,我的网络定义,我的培训代码和我的验证代码。

我几天来一直在努力解决这个问题,根本无法弄清楚如何继续。如果有人能帮助我,我会非常感激!

要了解问题的核心,当我恢复模型时,我会收到一条错误消息,说明

   FailedPreconditionError: Attempting to use uninitialized value prediction/Level1Encoding/conv1/conv2d/kernel
     [[Node: prediction/Level1Encoding/conv1/conv2d/kernel/read = Identity[T=DT_FLOAT, _class=["loc:@prediction/Level1Encoding/conv1/conv2d/kernel"], _device="/job:localhost/replica:0/task:0/cpu:0"](prediction/Level1Encoding/conv1/conv2d/kernel)]]

Caused by op 'prediction/Level1Encoding/conv1/conv2d/kernel/read', defined at:
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/spyder/utils/ipython/start_kernel.py", line 231, in <module>
    main()
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/spyder/utils/ipython/start_kernel.py", line 227, in main
    kernel.start()
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/ipykernel/kernelapp.py", line 477, in start
    ioloop.IOLoop.instance().start()
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/zmq/eventloop/ioloop.py", line 177, in start
    super(ZMQIOLoop, self).start()
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/tornado/ioloop.py", line 888, in start
    handler_func(fd_obj, events)
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/tornado/stack_context.py", line 277, in null_wrapper
    return fn(*args, **kwargs)
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 440, in _handle_events
    self._handle_recv()
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 472, in _handle_recv
    self._run_callback(callback, msg)
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/zmq/eventloop/zmqstream.py", line 414, in _run_callback
    callback(*args, **kwargs)
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/tornado/stack_context.py", line 277, in null_wrapper
    return fn(*args, **kwargs)
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 283, in dispatcher
    return self.dispatch_shell(stream, msg)
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 235, in dispatch_shell
    handler(stream, idents, msg)
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/ipykernel/kernelbase.py", line 399, in execute_request
    user_expressions, allow_stdin)
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/ipykernel/ipkernel.py", line 196, in do_execute
    res = shell.run_cell(code, store_history=store_history, silent=silent)
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/ipykernel/zmqshell.py", line 533, in run_cell
    return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2717, in run_cell
    interactivity=interactivity, compiler=compiler, result=result)
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2827, in run_ast_nodes
    if self.run_code(code, result):
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2881, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)
  File "<ipython-input-42-a9ecd95c66cb>", line 1, in <module>
    runfile('/Users/Karl/Research/NNStuff/NewTumor/eval.py', wdir='/Users/Karl/Research/NNStuff/NewTumor')
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/spyder/utils/site/sitecustomize.py", line 880, in runfile
    execfile(filename, namespace)
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/spyder/utils/site/sitecustomize.py", line 102, in execfile
    exec(compile(f.read(), filename, 'exec'), namespace)
  File "/Users/Karl/Research/NNStuff/NewTumor/eval.py", line 58, in <module>
    run_model()
  File "/Users/Karl/Research/NNStuff/NewTumor/eval.py", line 42, in run_model
    v_pred = uNet2D(X, BETA, KERNEL_SIZE, False)
  File "/Users/Karl/Research/NNStuff/NewTumor/definitions.py", line 56, in uNet2D
    conv1=tf.layers.conv2d(x,64,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/tensorflow/python/layers/convolutional.py", line 551, in conv2d
    return layer.apply(inputs)
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/tensorflow/python/layers/base.py", line 503, in apply
    return self.__call__(inputs, *args, **kwargs)
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/tensorflow/python/layers/base.py", line 443, in __call__
    self.build(input_shapes[0])
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/tensorflow/python/layers/convolutional.py", line 137, in build
    dtype=self.dtype)
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/tensorflow/python/layers/base.py", line 383, in add_variable
    trainable=trainable and self.trainable)
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/tensorflow/python/ops/variable_scope.py", line 1065, in get_variable
    use_resource=use_resource, custom_getter=custom_getter)
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/tensorflow/python/ops/variable_scope.py", line 962, in get_variable
    use_resource=use_resource, custom_getter=custom_getter)
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/tensorflow/python/ops/variable_scope.py", line 367, in get_variable
    validate_shape=validate_shape, use_resource=use_resource)
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/tensorflow/python/ops/variable_scope.py", line 352, in _true_getter
    use_resource=use_resource)
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/tensorflow/python/ops/variable_scope.py", line 725, in _get_single_variable
    validate_shape=validate_shape)
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/tensorflow/python/ops/variables.py", line 199, in __init__
    expected_shape=expected_shape)
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/tensorflow/python/ops/variables.py", line 330, in _init_from_args
    self._snapshot = array_ops.identity(self._variable, name="read")
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/tensorflow/python/ops/gen_array_ops.py", line 1400, in identity
    result = _op_def_lib.apply_op("Identity", input=input, name=name)
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 767, in apply_op
    op_def=op_def)
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 2630, in create_op
    original_op=self._default_original_op, op_def=op_def)
  File "/Users/Karl/anaconda/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 1204, in __init__
    self._traceback = self._graph._extract_stack()  # pylint: disable=protected-access

FailedPreconditionError (see above for traceback): Attempting to use uninitialized value prediction/Level1Encoding/conv1/conv2d/kernel
     [[Node: prediction/Level1Encoding/conv1/conv2d/kernel/read = Identity[T=DT_FLOAT, _class=["loc:@prediction/Level1Encoding/conv1/conv2d/kernel"], _device="/job:localhost/replica:0/task:0/cpu:0"](prediction/Level1Encoding/conv1/conv2d/kernel)]]

这对应于我网络的第一层。

因此定义了网络:

def uNet2D(x, REGULARIZER, KERNEL_SIZE, IS_TRAINING):
regularizer = tf.contrib.layers.l2_regularizer(scale=REGULARIZER)

#L1 encode
with tf.variable_scope('Level1Encoding'):
    with tf.variable_scope('conv1'):
        conv1=tf.layers.conv2d(x,64,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv1  = tf.layers.batch_normalization(
        inputs=conv1,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = IS_TRAINING)
        conv1 = tf.nn.relu(conv1)

    with tf.variable_scope('conv2'):
        conv2=tf.layers.conv2d(conv1,64,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv2  = tf.layers.batch_normalization(
        inputs=conv2,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = IS_TRAINING)
        conv2 = tf.nn.relu(conv2)
    with tf.variable_scope('conv3'):
        conv3=tf.layers.conv2d(conv2,64,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv3  = tf.layers.batch_normalization(
        inputs=conv3,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = IS_TRAINING)
        conv3 = tf.nn.relu(conv3)

    conv3mp=tf.layers.max_pooling2d(conv3,2,2,padding='same')

with tf.variable_scope('Level2Encoding'):
    with tf.variable_scope('conv1'):
        conv4=tf.layers.conv2d(conv3mp,128,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv4  = tf.layers.batch_normalization(
        inputs=conv4,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = IS_TRAINING)
        conv4 = tf.nn.relu(conv4)

    with tf.variable_scope('conv2'):
        conv5=tf.layers.conv2d(conv4,128,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv5  = tf.layers.batch_normalization(
        inputs=conv5,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = IS_TRAINING)
        conv5 = tf.nn.relu(conv5)

    with tf.variable_scope('conv3'):
        conv6=tf.layers.conv2d(conv5,128,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv6  = tf.layers.batch_normalization(
        inputs=conv6,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = IS_TRAINING)
        conv6 = tf.nn.relu(conv6)

    conv6mp=tf.layers.max_pooling2d(conv6,2,2,padding='same')

with tf.variable_scope('Level3Encoding'):
    with tf.variable_scope('conv1'):
        conv7=tf.layers.conv2d(conv6mp,256,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv7  = tf.layers.batch_normalization(
        inputs=conv7,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = IS_TRAINING)
        conv7 = tf.nn.relu(conv7)

    with tf.variable_scope('conv2'):    
        conv8=tf.layers.conv2d(conv7,256,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv8  = tf.layers.batch_normalization(
        inputs=conv8,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = IS_TRAINING)
        conv8 = tf.nn.relu(conv8)

    with tf.variable_scope('conv3'):
        conv9=tf.layers.conv2d(conv8,256,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv9  = tf.layers.batch_normalization(
        inputs=conv9,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = IS_TRAINING)
        conv9 = tf.nn.relu(conv9)

    conv9mp=tf.layers.max_pooling2d(conv9,2,2,padding='same')

with tf.variable_scope('Level4Encoding'):
    with tf.variable_scope('conv1'):
        conv10=tf.layers.conv2d(conv9mp,512,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv10  = tf.layers.batch_normalization(
        inputs=conv10,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = IS_TRAINING)
        conv10 = tf.nn.relu(conv10)

    with tf.variable_scope('conv2'):
        conv11=tf.layers.conv2d(conv10,512,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv11  = tf.layers.batch_normalization(
        inputs=conv11,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = IS_TRAINING)
        conv11 = tf.nn.relu(conv11)

    with tf.variable_scope('conv3'):
        conv12=tf.layers.conv2d(conv11,512,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv12  = tf.layers.batch_normalization(
        inputs=conv12,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = IS_TRAINING)
        conv12 = tf.nn.relu(conv12)

    conv12mp=tf.layers.max_pooling2d(conv12,2,2,padding='same')


with tf.variable_scope('Level5'):
    with tf.variable_scope('conv1'):
        conv13=tf.layers.conv2d(conv12mp,1024,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv13  = tf.layers.batch_normalization(
        inputs=conv13,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = IS_TRAINING)
        conv13 = tf.nn.relu(conv13)

    with tf.variable_scope('conv2'):
        conv14=tf.layers.conv2d(conv13,1024,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv14  = tf.layers.batch_normalization(
        inputs=conv14,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = IS_TRAINING)
        conv14 = tf.nn.relu(conv14)

    with tf.variable_scope('conv3'):
        conv15=tf.layers.conv2d(conv14,1024,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv15  = tf.layers.batch_normalization(
        inputs=conv15,
        axis=-1,
        momentum=0.999,
        epsilon=0.001,
        center=True,
        scale=True,
        training = IS_TRAINING)
        conv15 = tf.nn.relu(conv15)

    conv15=tf.layers.conv2d_transpose(conv15,512,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, strides=(2,2),padding='same')

with tf.variable_scope('Level4Decoding'):
    inp     = tf.concat([conv12,conv15],3)
    with tf.variable_scope('conv1'):
        conv16  = tf.layers.conv2d(inp,256,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv16  = tf.layers.batch_normalization(
                inputs=conv16,
                axis=-1,
                momentum=0.999,
                epsilon=0.001,
                center=True,
                scale=True,
                training = IS_TRAINING)
        conv16 = tf.nn.relu(conv16)

    with tf.variable_scope('conv2'):
        conv17=tf.layers.conv2d(conv16,256,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv17  = tf.layers.batch_normalization(
                inputs=conv17,
                axis=-1,
                momentum=0.999,
                epsilon=0.001,
                center=True,
                scale=True,
                training = IS_TRAINING)
        conv17 = tf.nn.relu(conv17)

    with tf.variable_scope('conv3'):
        conv18=tf.layers.conv2d(conv17,256,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv18  = tf.layers.batch_normalization(
                inputs=conv18,
                axis=-1,
                momentum=0.999,
                epsilon=0.001,
                center=True,
                scale=True,
                training = IS_TRAINING)
        conv18 = tf.nn.relu(conv18)

    conv18=tf.layers.conv2d_transpose(conv18,256,(KERNEL_SIZE, KERNEL_SIZE),strides=(2,2), kernel_regularizer=regularizer, padding='same')

with tf.variable_scope('Level3Decoding'):
    inp     = tf.concat([conv9,conv18],3)
    with tf.variable_scope('conv1'):
        conv19  = tf.layers.conv2d(inp,128,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv19  = tf.layers.batch_normalization(
                inputs=conv19,
                axis=-1,
                momentum=0.999,
                epsilon=0.001,
                center=True,
                scale=True,
                training = IS_TRAINING)
        conv19 = tf.nn.relu(conv19)

    with tf.variable_scope('conv2'):
        conv20=tf.layers.conv2d(conv19,128,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv20  = tf.layers.batch_normalization(
                inputs=conv20,
                axis=-1,
                momentum=0.999,
                epsilon=0.001,
                center=True,
                scale=True,
                training = IS_TRAINING)
        conv20 = tf.nn.relu(conv20)

    with tf.variable_scope('conv3'):
        conv21=tf.layers.conv2d(conv20,128,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv21  = tf.layers.batch_normalization(
                inputs=conv21,
                axis=-1,
                momentum=0.999,
                epsilon=0.001,
                center=True,
                scale=True,
                training = IS_TRAINING)
        conv21 = tf.nn.relu(conv21)

    conv21=tf.layers.conv2d_transpose(conv21,128,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, strides=(2,2),padding='same')

with tf.variable_scope('Level2Decoding'):
    inp     = tf.concat([conv6,conv21],3)
    with tf.variable_scope('conv1'):
        conv22  = tf.layers.conv2d(inp,64,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv22  = tf.layers.batch_normalization(
                inputs=conv22,
                axis=-1,
                momentum=0.999,
                epsilon=0.001,
                center=True,
                scale=True,
                training = IS_TRAINING)
        conv22 = tf.nn.relu(conv22)

    with tf.variable_scope('conv2'):
        conv23  = tf.layers.conv2d(conv22,128,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv23  = tf.layers.batch_normalization(
                inputs=conv23,
                axis=-1,
                momentum=0.999,
                epsilon=0.001,
                center=True,
                scale=True,
                training = IS_TRAINING)
        conv23 = tf.nn.relu(conv23)

    with tf.variable_scope('conv3'):
        conv24=tf.layers.conv2d(conv23,128,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv24  = tf.layers.batch_normalization(
                inputs=conv24,
                axis=-1,
                momentum=0.999,
                epsilon=0.001,
                center=True,
                scale=True,
                training = IS_TRAINING)
        conv24 = tf.nn.relu(conv24)

    conv24=tf.layers.conv2d_transpose(conv24,64,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, strides=(2,2),padding='same')

with tf.variable_scope('Level1Decoding'):
    inp     = tf.concat([conv3,conv24],3)
    with tf.variable_scope('conv1'):
        conv25  = tf.layers.conv2d(inp,64,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv25  = tf.layers.batch_normalization(
                inputs=conv25,
                axis=-1,
                momentum=0.999,
                epsilon=0.001,
                center=True,
                scale=True,
                training = IS_TRAINING)
        conv25 = tf.nn.relu(conv25)

    with tf.variable_scope('conv2'):
        conv26  = tf.layers.conv2d(conv25,128,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv26  = tf.layers.batch_normalization(
                inputs=conv25,
                axis=-1,
                momentum=0.999,
                epsilon=0.001,
                center=True,
                scale=True,
                training = IS_TRAINING)
        conv26 = tf.nn.relu(conv26)

    with tf.variable_scope('conv3'):
        conv27  = tf.layers.conv2d(conv26,128,(KERNEL_SIZE, KERNEL_SIZE), kernel_regularizer=regularizer, padding='same')
        conv27  = tf.layers.batch_normalization(
                inputs=conv26,
                axis=-1,
                momentum=0.999,
                epsilon=0.001,
                center=True,
                scale=True,
                training = IS_TRAINING)
        conv27=tf.nn.relu(conv27)

    convOUT = tf.layers.conv2d(conv27,1,(1,1),  kernel_regularizer=regularizer, padding='same')
    return convOUT

我用来训练它的代码很简单:

from __future__ import print_function
import tensorflow as tf
import numpy as np
import os
import glob
import os
from scipy.io import loadmat
from random import randint
from definitions import *


tf.reset_default_graph()

#HYPERPARAMS
LR           = 1e-5
EPS          = 1e-12
BETA         = .1
BATCH_SIZE   = 1
NUM_STEPS    = 10 #number of iterations before we save
KERNEL_SIZE  = 3

training=Dataset2D('/Users/Karl/Research/NNStuff/Tumor/Testing/')

X = tf.placeholder(tf.float32, shape=[BATCH_SIZE, 256, 256, 5],   name='X')  #input
Y = tf.placeholder(tf.float32, shape = [BATCH_SIZE, 256, 256, 1], name='Y')  #'labels'


def run_model():

GLOBAL_STEP = 0

with tf.variable_scope('prediction') as scope:
    t_pred = uNet2D(X, BETA, KERNEL_SIZE, True)  
    t_cost = tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.reshape(Y,[-1]),logits=tf.reshape(t_pred,[-1])))
    scope.reuse_variables()
    v_pred = uNet2D(X, BETA, KERNEL_SIZE, False)  
    v_cost = tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.reshape(Y,[-1]),logits=tf.reshape(v_pred,[-1])))


optimizer = tf.train.AdamOptimizer(learning_rate=LR).minimize(t_cost)

with tf.name_scope("training"):
    tf.summary.scalar("training_cost", t_cost, collections=['training'])

with tf.name_scope("validation"):
    tf.summary.scalar("validation_cost", v_cost, collections=['validation'])
    #tf.summary.image("VALIDATION_X",X, collections=['validation'])
    #tf.summary.image("VALIDATION_Y",Y, collections=['validation'])
    #tf.summary.image("VALIDATION_PRED", v_pred, collections=['validation'])


saver = tf.train.Saver()
with tf.Session() as sess:
    train_merge      = tf.summary.merge_all(key='training')
    validation_merge = tf.summary.merge_all(key='validation')
    print('Beginning Session!')
    writer  =  tf.summary.FileWriter ( './graphs' ,  sess.graph)
    sess.run(tf.global_variables_initializer())
    print('Running Model!')
    while True:
        if GLOBAL_STEP % NUM_STEPS != 0:
            x,y=training.drawBatch(BATCH_SIZE)
            y=np.expand_dims(y,-1)
            _, c, summary = sess.run([optimizer, t_cost, train_merge], feed_dict = {X: x, Y: y})
            print(c)
        else:
            x,y=training.drawBatch(BATCH_SIZE)
            y=np.expand_dims(y,-1)
            c, summary = sess.run([v_cost, validation_merge], feed_dict = {X: x, Y: y})
            save_path=saver.save(sess, './TumorOUT/model')
            print('val')
            print(c)

run_model()

我正试图存储和评估模型:

    #!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu May 24 20:03:35 2018

@author: Karl
"""

from __future__ import print_function
import tensorflow as tf
import numpy as np
import os
import glob
import os
from scipy.io import loadmat
from random import randint
from definitions import *


tf.reset_default_graph()

#HYPERPARAMS
LR           = 1e-5
EPS          = 1e-12
BETA         = .1
BATCH_SIZE   = 1
NUM_STEPS    = 10 #number of iterations before we save
KERNEL_SIZE  = 3

#training=Dataset2D('/Users/Karl/Research/NNStuff/Tumor/Testing/')

X = tf.placeholder(tf.float32, shape=[BATCH_SIZE, 256, 256, 5],   name='X')  #input
Y = tf.placeholder(tf.float32, shape = [BATCH_SIZE, 256, 256, 1], name='Y')  #'labels'


def run_model():

    GLOBAL_STEP = 0

    with tf.variable_scope('prediction') as scope:
        v_pred = uNet2D(X, BETA, KERNEL_SIZE, False)  
        v_cost = tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.reshape(Y,[-1]),logits=tf.reshape(v_pred,[-1])))

    with tf.Session() as sess:
        new_saver = tf.train.import_meta_graph('/Users/Karl/Research/NNStuff/NewTumor/TumorOUT/model.meta')
        new_saver.restore(sess,tf.train.latest_checkpoint('/Users/Karl/Research/NNStuff/NewTumor/TumorOUT/'))   
        print('Beginning Session!')
        print('Running Model!')
        while True:
                x,y=training.drawBatch(BATCH_SIZE)
                y=np.expand_dims(y,-1)
                c = sess.run([v_cost], feed_dict = {X: x, Y: y})
                print('val')
                print(c)

run_model()

1 个答案:

答案 0 :(得分:0)

import_meta_graph将创建与保存的图形对应的新操作,它返回的保护程序将仅恢复这些变量。所以你要么想要使用MetaGraph中的变量(你可以从当前的Graph中获取它们的名字),或者如果你想使用Python中定义的变量/ ops,只需加载检查点而不加载MetaGraph。