我的字符矩阵很大(15000 x 150),格式如下:
A B C D
[1,] "0/0" "0/1" "0/0" "1/1"
[2,] "1/1" "1/1" "0/1" "0/1"
[3,] "1/2" "0/3" "1/1" "2/2"
[4,] "0/0" "0/0" "2/2" "0/0"
[5,] "0/0" "0/0" "0/0" "0/0"
我需要在列之间进行成对比较,并获得其中行的比例
'/'
分隔的两个字符串都不相等(编码为0); '/'
分隔的字符串是相等的(编码为1); '/'
分隔的两个字符串都相等(编码为2)。上述5 x 4样本矩阵的预期输出为
0 1 2
A B 0.2 0.2 0.6
A C 0.2 0.4 0.4
A D 0.2 0.4 0.4
B C 0.4 0.4 0.2
B D 0.2 0.4 0.4
C D 0.6 0.0 0.4
我尝试使用pmatch
,但是无法进行成对比较以获得上述输出。任何帮助表示赞赏。
修订后的问题
是否可以在两对之间排除值“ 0/0”以获得比例?即当比较A和B时,排除A = B = 0/0时得到其余部分的比例吗?
答案 0 :(得分:2)
这是我到目前为止可以提供的:
fun1 <- function (S) {
n <- ncol(S)
ref2 <- combn(colnames(S), 2)
ref1 <- paste(ref2[1, ], ref2[2, ], sep = "&")
z <- matrix(0, choose(n, 2), 3L, dimnames = list(ref1, 0:2))
k <- 1L
for (j in 1:(n - 1)) {
x <- scan(text = S[, j], what = integer(), sep = "/", quiet = TRUE)
for (i in (j + 1):n) {
y <- scan(text = S[, i], what = integer(), sep = "/", quiet = TRUE)
count <- tabulate(.colSums(x == y, 2L, length(x) / 2L) + 1L)
z[k, ] <- count / sum(count)
k <- k + 1L
}
}
z
}
它看起来很糟糕,因为它有一个用R编写的双循环嵌套,但是最内层的内核通过使用scan
,.colSums
和tabulate
极为有效。迭代的总数为choose(ncol(S), 2)
,对于您的150列矩阵而言,迭代的次数不太多。如果需要,我可以用Rcpp版本替换fun1
。
## your data
S <- structure(c("0/0", "1/1", "1/2", "0/0", "0/0", "0/1", "1/1",
"0/3", "0/0", "0/0", "0/0", "0/1", "1/1", "2/2", "0/0", "1/1",
"0/1", "2/2", "0/0", "0/0"), .Dim = c(5L, 4L), .Dimnames = list(
NULL, c("A", "B", "C", "D")))
fun1(S)
# 0 1 2
#A&B 0.2 0.2 0.6
#A&C 0.2 0.4 0.4
#A&D 0.2 0.4 0.4
#B&C 0.4 0.4 0.2
#B&D 0.2 0.4 0.4
#C&D 0.6 0.0 0.4
性能
哈,当我在15000 x 150矩阵上实际测试我的函数时,我发现:
scan
从循环嵌套中移出以加快速度,也就是说,我可以一次性将字符矩阵扫描为整数矩阵; scan(text = blabla)
花了很多时间,而scan(file = blabla)
却很快,因此值得从文本文件中读取数据; 我制作了一个具有文件访问权限的fun2
版本,并使用了Rcpp作为循环嵌套版本fun3
。事实证明:
我回来了并将它们张贴在这里(请参阅revision 2),我看到user20650's从strsplit
开始。启动时,我从选项中排除了strsplit
,因为我认为使用string操作可能会很慢。是的,它很慢,但仍然比scan
快。因此,我使用fun4
编写了strsplit
,并使用Rcpp编写了相应的fun5
(请参见revision 3)。分析表明,60%的执行时间用在strsplit
中,因此它确实是性能杀手。然后,我用一个更简单的C ++实现替换了strsplit
,unlist
,as.integer
和matrix
。产生十倍的提升!!好吧,如果您仔细考虑,这是合理的。通过使用C库atoi
中的strtol
(或<stdlib.h>
),我们可以将字符串直接转换为整数,从而消除了所有字符串操作!
长话短说,我只提供最终的,最快的版本。
library(Rcpp)
cppFunction("IntegerMatrix getInt (CharacterMatrix Char) {
int m = Char.nrow(), n = Char.ncol();
IntegerMatrix Int(2 * m, n);
char *s1, *s2;
int i, *iptr = &Int(0, 0);
for (i = 0; i < m * n; i++) {
s1 = (char *)Char[i]; s2 = s1;
while(*s2 != '/') s2++; *iptr++ = atoi(s1);
s2++; *iptr++ = atoi(s2);
}
return Int;
}")
cppFunction('NumericMatrix pairwise(NumericMatrix z, IntegerMatrix Int) {
int m = Int.nrow() / 2, n = Int.ncol();
int i, j, k, *x, *y, count[3], *end; bool b1 = 0, b2 = 0;
double M = 1 / (double)m;
for (k = 0, j = 0; j < (n - 1); j++) {
end = &Int(2 * m, j);
for (i = j + 1; i < n; i++, k++) {
x = &Int(0, j); y = &Int(0, i);
count[0] = 0; count[1] = 0; count[2] = 0;
for (; x < end; x += 2, y += 2) {
b1 = (x[0] == y[0]);
b2 = (x[1] == y[1]);
count[(int)b1 + (int)b2]++;
}
z(k, 0) = (double)count[0] * M;
z(k, 1) = (double)count[1] * M;
z(k, 2) = (double)count[2] * M;
}
}
return z;
}')
fun7 <- function (S) {
## separate rows using Rcpp; `Int` is an integer matrix
n <- ncol(S)
Int <- getInt(S)
m <- nrow(Int) / 2
## initialize the resulting matrix `z`
ref2 <- combn(colnames(S), 2)
ref1 <- paste(ref2[1, ], ref2[2, ], sep = "&")
z <- matrix(0, choose(n, 2), 3L, dimnames = list(ref1, 0:2))
## use Rcpp for pairwise summary
pairwise(z, Int)
}
让我们生成一个随机的15000 x 150矩阵并尝试一下。
sim <- function (m, n) {
matrix(sample(c("0/0", "0/1", "1/0", "1/1"), m * n, TRUE), m, n,
dimnames = list(NULL, 1:n))
}
S <- sim(15000, 150)
system.time(oo <- fun7(S))
# user system elapsed
# 1.324 0.000 1.325
哦,这很快就亮了!
是否可以在两对之间排除值“ 0/0”以获得比例?即当比较A和B时,排除A = B = 0/0时得到其余部分的比例吗?
这种适应在C / C ++级别很简单。只是一个附加的if
测试。
## a new C++ function `pairwise_exclude00`
cppFunction('NumericMatrix pairwise_exclude00(NumericMatrix z, IntegerMatrix Int) {
int m = Int.nrow() / 2, n = Int.ncol();
int i, j, k, *x, *y, count[3], size, *end;
bool b1 = 0, b2 = 0, exclude = 0;
double M;
for (k = 0, j = 0; j < (n - 1); j++) {
end = &Int(2 * m, j);
for (i = j + 1; i < n; i++, k++) {
x = &Int(0, j); y = &Int(0, i);
count[0] = 0; count[1] = 0; count[2] = 0; size = 0;
for (; x < end; x += 2, y += 2) {
b1 = (x[0] == y[0]);
b2 = (x[1] == y[1]);
exclude = (x[0] == 0) & (x[1] == 0) & b1 & b2;
if (!exclude) {
count[(int)b1 + (int)b2]++;
size++;
}
}
M = 1 / (double)size;
z(k, 0) = (double)count[0] * M;
z(k, 1) = (double)count[1] * M;
z(k, 2) = (double)count[2] * M;
}
}
return z;
}')
## re-define `fun7` with a new logical argument `exclude00`
fun7 <- function (S, exclude00) {
## separate rows using Rcpp; `Int` is an integer matrix
n <- ncol(S)
Int <- getInt(S)
m <- nrow(Int) / 2
## initialize the resulting matrix `z`
ref2 <- combn(colnames(S), 2)
ref1 <- paste(ref2[1, ], ref2[2, ], sep = "&")
z <- matrix(0, choose(n, 2), 3L, dimnames = list(ref1, 0:2))
## use Rcpp for pairwise summary
if (exclude00) pairwise_exclude00(z, Int)
else pairwise(z, Int)
}
使用问题中的示例S
:
fun7(S, TRUE)
# 0 1 2
#A&B 0.3333333 0.3333333 0.3333333
#A&C 0.3333333 0.6666667 0.0000000
#A&D 0.3333333 0.6666667 0.0000000
#B&C 0.5000000 0.5000000 0.0000000
#B&D 0.3333333 0.6666667 0.0000000
#C&D 0.7500000 0.0000000 0.2500000
答案 1 :(得分:1)
这使用了李哲源的答案,特别是.\
的想法-加快了速度。对于数据,在旧笔记本电脑上15000x160大约需要14秒
tabulate
数据
# split strings and form matrix for each column
ap = matrix(unlist(strsplit(m, "/")), nc=2, byrow=TRUE)
ap = split.data.frame(ap, rep(colnames(m), each=nrow(m))) # maybe a way to use array?
# get 2-way combination of column names
co = combn(colnames(m), 2)
# test equality of each matrix
ap = apply(co, 2, function(x) tabulate(rowSums(ap[[x[1]]]==ap[[x[2]]])+1, 3))
# output
data.frame(t(co), t(ap)/nrow(m))
答案 2 :(得分:0)
您可以创建3个函数来指示0,1,2个条件,然后遍历列名以具有不同的对,并应用函数来创建结果数据。
library(tidyr)
matrix <- read.csv("matrix.csv", stringsAsFactors = F)
n <-nrow(matrix)
c <- ncol(matrix)
zero <- function(A, B){ res <- sum(!grepl("0", A) & !grepl("0", B))/n }
one <- function(A, B) {
A <- unlist(str_split(A, "/"))
B <- unlist(str_split(B, "/"))
comp <-data.frame(cbind(A==B, c(1,2), id= sort(rep(1:n,2))))%>%spread(V2, V1)
res <- sum(sum(comp[,2]+comp[,3])>0)/n}
two <- function(A, B){res <- sum(A==B)/n}
res <-data.frame()
k <-1
for (i in 1:(c-1)){
for (j in (i+1):c){
A<-matrix[,i]
B<-matrix[,j]
res[k,1] <- colnames(matrix)[i]
res[k,2] <- colnames(matrix)[j]
res[k,3] <- zero(A,B)
res[k,4] <- one(A,B)
res[k,5] <- two(A,B)
k <-k+1
}
}
colnames(res) <-c("G1", "G2", "0", "1", "2")