我想用Tensorflow对三个不同的图像类别进行图像识别。我现在的问题是为训练集标记图像并将其存储在2D阵列中以在识别中使用它。我已经使用过methode来存储2个类(在代码示例中为 X 和 Y ),但是现在我也想为第三类存储(在代码中以 Z 命名。
import cv2 # working with, mainly resizing, images
import numpy as np # dealing with arrays
import os # dealing with directories
from random import shuffle # mixing up current data
from tqdm import tqdm # percentage bar for tasks
import time
import matplotlib.pyplot as plt
import tflearn
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.estimator import regression
TRAIN_DIR = 'MYPATH'
TEST_DIR = 'MYPATH'
IMG_SIZE = 80
# learning rate
LR = 1e-5
MODEL_NAME = 'name-{}-{}.model'.format(LR, '2conv-basic')
# convert image and label information to array information
def label_img(img):
#split images
word_label = img.split('.')[-3]
if word_label == 'X': return [1,0]
elif word_label == 'Y': return [0,1]
elif word_label == 'Z' : return [???]
# create training data array
def create_train_data():
training_data = []
for img in tqdm(os.listdir(TRAIN_DIR)):
label = label_img(img)
path = os.path.join(TRAIN_DIR,img)
img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (IMG_SIZE,IMG_SIZE))
training_data.append([np.array(img),np.array(label)])
shuffle(training_data)
np.save('train_data.npy', training_data)
return training_data
def process_test_data():
testing_data = []
for img in tqdm(os.listdir(TEST_DIR)):
path = os.path.join(TEST_DIR,img)
img_num = img.split('.')[1]
img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (IMG_SIZE,IMG_SIZE))
testing_data.append([np.array(img), img_num])
shuffle(testing_data)
np.save('test_data.npy', testing_data)
return testing_data
train_data = create_train_data()
# if you already have train data:
#train_data = np.load('train_data.npy')
import tensorflow as tf
tf.reset_default_graph()
convnet = input_data(shape=[None, IMG_SIZE, IMG_SIZE, 1], name='input')
convnet = conv_2d(convnet, 32, 2, activation='relu')
convnet = max_pool_2d(convnet, 2)
convnet = conv_2d(convnet, 64, 2, activation='relu')
convnet = max_pool_2d(convnet, 2)
convnet = conv_2d(convnet, 32, 2, activation='relu')
convnet = max_pool_2d(convnet, 2)
convnet = conv_2d(convnet, 64, 2, activation='relu')
convnet = max_pool_2d(convnet, 2)
convnet = conv_2d(convnet, 32, 2, activation='relu')
convnet = max_pool_2d(convnet, 2)
convnet = conv_2d(convnet, 64, 2, activation='relu')
convnet = max_pool_2d(convnet, 2)
convnet = fully_connected(convnet, 1024, activation='relu')
convnet = dropout(convnet, 0.8)
convnet = fully_connected(convnet, 2, activation='softmax')
convnet = regression(convnet, optimizer='adam', learning_rate=LR, loss='categorical_crossentropy', name='targets')
model = tflearn.DNN(convnet, tensorboard_dir='log')
if os.path.exists('{}.meta'.format(MODEL_NAME)):
model.load(MODEL_NAME)
print('model loaded!')
train = train_data[:-500]
test = train_data[-500:]
X = np.array([i[0] for i in train]).reshape(-1,IMG_SIZE, IMG_SIZE, 1)
Y = [i[1] for i in train]
test_x = np.array([i[0] for i in test]).reshape(-1,IMG_SIZE,IMG_SIZE,1)
test_y = [i[1] for i in test]
model.fit({'input': X}, {'targets': Y}, n_epoch=15, validation_set=({'input': test_x}, {'targets': test_y}),
snapshot_step=500, show_metric=True, run_id=MODEL_NAME)
model.save(MODEL_NAME)
# if you need to create the data:
test_data = process_test_data()
# if you already have some saved:
#test_data = np.load('test_data.npy')
fig=plt.figure()
for num,data in enumerate(test_data[:12]):
img_num = data[1]
img_data = data[0]
y = fig.add_subplot(3,4,num+1)
orig = img_data
data = img_data.reshape(IMG_SIZE,IMG_SIZE,1)
#model_out = model.predict([data])[0]
model_out = model.predict([data])[0]
if np.argmax(model_out) == 1: str_label='X'
else: str_label='Y'
y.imshow(orig,cmap='gray')
plt.title(str_label)
y.axes.get_xaxis().set_visible(False)
y.axes.get_yaxis().set_visible(False)
plt.show()
答案 0 :(得分:1)
要添加类,只需扩展图像标签数组的尺寸即可:
# convert image and label information to array information
def label_img(img):
#split images
word_label = img.split('.')[-3]
if word_label == 'X': return [1,0,0]
elif word_label == 'Y': return [0,1,0]
elif word_label == 'Z' : return [0,0,1]
您还需要更新softmax分类器以处理3个类:
convnet = fully_connected(convnet, 3, activation='softmax')
您还需要禁用旧模型的加载。旧模型仅对旧图形有效,但是由于已对其进行更改,因此我们必须从头开始。
###
if os.path.exists('{}.meta'.format(MODEL_NAME)):
model.load(MODEL_NAME)
print('model loaded!')
###