Tensorflow对象检测最大提议的确切含义是什么?

时间:2018-08-13 13:44:41

标签: python tensorflow

我试图准确地了解tensorflow对象检测配置字段。

根据这篇文章(https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359),为了在准确性和速度之间取得良好的平衡,我将first_stage_max_proposals从原点100更改为50。

好消息是,它确实将推理延迟(从每张图像的4.2秒减少到2.2秒),但是,坏消息是,它也降低了准确性。

然后,我将提案总数从50个更改为70个,准确性更高。

因此,我想确切地了解最高提案的控制范围。它是否与其他任何配置(例如max_detections_per_class或max_total_detections .etc)相关?

我在Google上搜索了很多,但对这个家伙的兴趣似乎有所减少。    我使用python3.6.4和tensorflow 1.8.0,这是我的模型配置:

model {
  faster_rcnn {
    num_classes: 3
    image_resizer {
      keep_aspect_ratio_resizer {
        min_dimension:  670
        max_dimension: 1013
      }
    }
    feature_extractor {
      type: "faster_rcnn_resnet101"
      first_stage_features_stride: 16
    }
    first_stage_anchor_generator {
      grid_anchor_generator {
        height_stride: 16
        width_stride: 16
        scales: 0.25
        scales: 0.5
        scales: 1.0
        scales: 2.0
        aspect_ratios: 0.5
        aspect_ratios: 1.0
        aspect_ratios: 2.0
      }
    }
    first_stage_box_predictor_conv_hyperparams {
      op: CONV
      regularizer {
        l2_regularizer {
          weight: 0.0
        }
      }
      initializer {
        truncated_normal_initializer {
          stddev: 0.01
        }
      }
    }
    first_stage_nms_score_threshold: 0.0
    first_stage_nms_iou_threshold: 0.7
    first_stage_max_proposals: 70
    first_stage_localization_loss_weight: 2.0
    first_stage_objectness_loss_weight: 1.0
    initial_crop_size: 14
    maxpool_kernel_size: 2
    maxpool_stride: 2
    second_stage_box_predictor {
      mask_rcnn_box_predictor {
        fc_hyperparams {
          op: FC
          regularizer {
            l2_regularizer {
              weight: 0.0
            }
          }
          initializer {
            variance_scaling_initializer {
              factor: 1.0
              uniform: true
              mode: FAN_AVG
            }
          }
        }
        use_dropout: false
        dropout_keep_probability: 1.0
      }
    }
    second_stage_post_processing {
      batch_non_max_suppression {
        score_threshold: 0.3
        iou_threshold: 0.6
        max_detections_per_class: 30
        max_total_detections: 30
      }
      score_converter: SOFTMAX
    }
    second_stage_localization_loss_weight: 2.0
    second_stage_classification_loss_weight: 1.0
    second_stage_batch_size: 70
  }
}
train_config {
  batch_size: 1
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
  optimizer {
    momentum_optimizer {
      learning_rate {
        exponential_decay_learning_rate {
          initial_learning_rate: 0.0003
          decay_steps: 2000
          decay_factor: 0.95
        }
      }
      momentum_optimizer_value: 0.9
    }
    use_moving_average: false
  }
  gradient_clipping_by_norm: 10.0
  fine_tune_checkpoint: "d:/od/tool/faster_rcnn3/model.ckpt"
  from_detection_checkpoint: true
}
train_input_reader {
  label_map_path: "d:/od/project/train_allinone/file/labelmap.pbtxt"
  tf_record_input_reader {
    input_path: "d:/od/project/train_allinone/file/tf.record"
  }
}

对此有任何解释,我们将不胜感激。

谢谢。

1 个答案:

答案 0 :(得分:0)

faster_rcnn.proto

// Naming conventions:
// Faster R-CNN models have two stages: a first stage region proposal network
// (or RPN) and a second stage box classifier.  We thus use the prefixes
// `first_stage_` and `second_stage_` to indicate the stage to which each
// parameter pertains when relevant

等等:

// Maximum number of RPN proposals retained after first stage postprocessing.
optional int32 first_stage_max_proposals = 15 [default=300];

更快的R-CNN具有两个网络,第一个提议可以发现对象的区域,第二个试图检测那些对象中的对象。由于第二网络必须在更多的潜在区域中进行搜索,因此第一个网络增加的投标数量会提高准确性,但意味着要进行更多的计算工作。有关Faster R-CNN的工作原理的简要说明,请查看Faster R-CNN Explained,如果要查看完整图片,可以查看原始出版物:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks