如何获得透视变形图像中点的(x,y)?

时间:2018-08-13 07:05:44

标签: python opencv perspective

我在原始图像上有一点,并且在图像上做了透视变形。现在如何在变形图像上获得该点的像素?这是示例:

import cv2
import numpy as np

original_img = cv2.imread('1.jpg')
# one point(400,560) on the original image
cv2.circle(original_img, (400,560), 7, (0,255,255), -1)
original_points = np.float32([(0,560), (0,450), (795,568), (795,748)])
destination_points = np.float32([(0,400), (0,0), (600,0), (600,400)])
# transformation matrix
M = cv2.getPerspectiveTransform(original_points, destination_points)
# warp perspective
warpped_img = cv2.warpPerspective(original_img, M, (600,400))
cv2.imshow('original', original_img)
cv2.imshow('warpped', warpped_img)
cv2.waitKey(0)

这是原始图像: enter image description here

这是变形的结果: enter image description here

原始图像上的点是(400,560)。如何计算变形图像上该点的像素点?

1 个答案:

答案 0 :(得分:1)

import cv2
import numpy as np

original_img = cv2.imread('1.jpg')
# one point(400,560) on the original image
cv2.circle(original_img, (400,560), 7, (0,255,255), -1)
original_points = np.float32([(0,560), (0,450), (795,568), (795,748)])
destination_points = np.float32([(0,400), (0,0), (600,0), (600,400)])
# transformation matrix
M = cv2.getPerspectiveTransform(original_points, destination_points)
pt =  np.array([[[400,560]]], dtype=np.float32)
dst_pt = cv2.perspectiveTransform(pt, M)
dst_pt = dst_pt.astype(int)
dst_pt = tuple(dst_pt[0,0,].tolist())
# warp perspective
warpped_img = cv2.warpPerspective(original_img, M, (600,400))
cv2.circle(warpped_img, dst_pt, 7, (0,255,255), -1)
cv2.imshow('original', original_img)
cv2.imshow('warpped', warpped_img)
cv2.waitKey(0)