我有两个df-df_a和df_b,
# df_a
number cur code
1000 USD 700
2000 USD 800
3000 USD 900
# df_b
number amount deletion code
1000 0.0 L 700
1000 10.0 X 700
1000 10.0 X 700
2000 20.0 X 800
2000 20.0 X 800
3000 0.0 L 900
3000 0.0 L 900
我想将df_a
与df_b
合并,
df_a = df_a.merge(df_b.loc[df_b.deletion != 'L'], how='left', on=['number', 'code'])
,然后在合并结果deleted
中创建一个名为df_a
的标志,该标志具有三个可能的值-full,partial和none;
full
-如果所有与特定number
值关联的行都具有deletion
= L;
partial
-如果某些行与特定的number
值相关联,则deletion
= L;
none
-没有与特定number
值关联的行,deletion
= L;
在进行合并时,也不应考虑来自df_b
且deletion
= L的行;结果看起来像是
number amount deletion deleted cur code
1000 10.0 X partial USD 700
1000 10.0 X partial USD 700
2000 20.0 X none USD 800
2000 20.0 X none USD 800
3000 0.0 NaN full USD 900
我尝试过
g = df_b['deletion'].ne('L').groupby([df_b['number'], df_b['code']])
m1 = g.any()
m2 = g.all()
d1 = dict.fromkeys(m1.index[m1 & ~m2], 'partial')
d2 = dict.fromkeys(m2.index[m2], 'full')
d = {**d1, **d2}
df_a = df_a.merge(df_b.loc[df_b.deletion != 'L'], how='left', on=['code', 'number'])
df_a['deleted'] = df_a[['number', 'code']].map(d).fillna('none')
但我遇到了错误,
AttributeError: 'DataFrame' object has no attribute 'map'
似乎df
没有map
功能,所以我想知道是否还有其他方法可以实现此目的。
答案 0 :(得分:4)
pd.DataFrame
对象没有map
方法。您可以改为从两列构造一个索引,并将pd.Index.map
与以下函数一起使用:
df_a['deleted'] = df_a.set_index(['number', 'code']).index.map(d.get)
df_a['deleted'] = df_a['deleted'].fillna('none')
请注意,此处我们使用d.get
而不是d
。与pd.Series.map
不同,pd.Index.map
无法直接接受字典,但可以接受诸如dict.get
之类的功能。
请注意,由于fillna
返回的是数组而不是序列,因此我们将pd.Index.map
操作分开了。