用于Xgboost的基于F1的自定义评估功能-Python API

时间:2018-07-30 05:36:16

标签: python-3.6 xgboost

为了优化F1,我编写了以下与xgboost一起使用的自定义评估函数。不幸的是,使用xgboost运行时,它将返回异常。

评估功能如下:

def F1_eval(preds, labels):

    t = np.arange(0, 1, 0.005)

    f = np.repeat(0, 200)



    Results = np.vstack([t, f]).T



    P = sum(labels == 1)


    for i in range(200):

        m = (preds >= Results[i, 0])

        TP = sum(labels[m] == 1)

        FP = sum(labels[m] == 0)

        if (FP + TP) > 0:
            Precision = TP/(FP + TP)

        Recall = TP/P

        if (Precision + Recall >0) :

            F1 = 2 * Precision * Recall / (Precision + Recall)

        else:

            F1 = 0

        Results[i, 1] = F1

    return(max(Results[:, 1]))

下面我提供了一个可复制的示例以及错误消息:

     from sklearn import datasets

    Wine = datasets.load_wine()

    X_wine = Wine.data
    y_wine = Wine.target

    y_wine[y_wine == 2] = 1

    X_wine_train, X_wine_test, y_wine_train, y_wine_test = train_test_split(X_wine, y_wine, test_size = 0.2)

    clf_wine = xgb.XGBClassifier(max_depth=6, learning_rate=0.1,silent=False, objective='binary:logistic', \
                      booster='gbtree', n_jobs=8, nthread=None, gamma=0, min_child_weight=1, max_delta_step=0, \
                      subsample=0.8, colsample_bytree=0.8, colsample_bylevel=1, reg_alpha=0, reg_lambda=1)

    clf_wine.fit(X_wine_train, y_wine_train,\
    eval_set=[(X_wine_train, y_wine_train), (X_wine_test, y_wine_test)], eval_metric=F1_eval, early_stopping_rounds=10, verbose=True)

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-453-452852658dd8> in <module>()
     12 clf_wine = xgb.XGBClassifier(max_depth=6, learning_rate=0.1,silent=False, objective='binary:logistic',                   booster='gbtree', n_jobs=8, nthread=None, gamma=0, min_child_weight=1, max_delta_step=0,                   subsample=0.8, colsample_bytree=0.8, colsample_bylevel=1, reg_alpha=0, reg_lambda=1)
     13 
---> 14 clf_wine.fit(X_wine_train, y_wine_train,eval_set=[(X_wine_train, y_wine_train), (X_wine_test, y_wine_test)], eval_metric=F1_eval, early_stopping_rounds=10, verbose=True)
     15 

C:\ProgramData\Anaconda3\lib\site-packages\xgboost\sklearn.py in fit(self, X, y, sample_weight, eval_set, eval_metric, early_stopping_rounds, verbose, xgb_model, sample_weight_eval_set)
    519                               early_stopping_rounds=early_stopping_rounds,
    520                               evals_result=evals_result, obj=obj, feval=feval,
--> 521                               verbose_eval=verbose, xgb_model=None)
    522 
    523         self.objective = xgb_options["objective"]

C:\ProgramData\Anaconda3\lib\site-packages\xgboost\training.py in train(params, dtrain, num_boost_round, evals, obj, feval, maximize, early_stopping_rounds, evals_result, verbose_eval, xgb_model, callbacks, learning_rates)
    202                            evals=evals,
    203                            obj=obj, feval=feval,
--> 204                            xgb_model=xgb_model, callbacks=callbacks)
    205 
    206 

C:\ProgramData\Anaconda3\lib\site-packages\xgboost\training.py in _train_internal(params, dtrain, num_boost_round, evals, obj, feval, xgb_model, callbacks)
     82         # check evaluation result.
     83         if len(evals) != 0:
---> 84             bst_eval_set = bst.eval_set(evals, i, feval)
     85             if isinstance(bst_eval_set, STRING_TYPES):
     86                 msg = bst_eval_set

C:\ProgramData\Anaconda3\lib\site-packages\xgboost\core.py in eval_set(self, evals, iteration, feval)
    957         if feval is not None:
    958             for dmat, evname in evals:
--> 959                 feval_ret = feval(self.predict(dmat), dmat)
    960                 if isinstance(feval_ret, list):
    961                     for name, val in feval_ret:

<ipython-input-383-dfb8d5181b18> in F1_eval(preds, labels)
     11 
     12 
---> 13         P = sum(labels == 1)
     14 
     15 

TypeError: 'bool' object is not iterable

我不明白为什么该功能无法正常工作。我在这里遵循了以下示例:https://github.com/dmlc/xgboost/blob/master/demo/guide-python/custom_objective.py

我想知道我在哪里犯错。

您的建议将不胜感激。

1 个答案:

答案 0 :(得分:2)

在进行sum(labels == 1)时,Python将标签== 1评估为Boolean对象,因此您得到TypeError: 'bool' object is not iterable

函数sum需要一个可迭代的对象,例如列表。这是您的错误示例:

In[32]: sum(True)
Traceback (most recent call last):
  File "C:\ProgramData\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2963, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)
  File "<ipython-input-32-6eb8f80b7f2e>", line 1, in <module>
    sum(True)
TypeError: 'bool' object is not iterable

如果要使用scikit-learn的f1_score,可以实现以下包装:

from sklearn.metrics import f1_score
import numpy as np

def f1_eval(y_pred, dtrain):
    y_true = dtrain.get_label()
    err = 1-f1_score(y_true, np.round(y_pred))
    return 'f1_err', err

结束语的参数是list(预测的)和DMatrix,它返回一个字符串,浮点数

# Setting your classifier
clf_wine = xgb.XGBClassifier(max_depth=6, learning_rate=0.1,silent=False, objective='binary:logistic', \
                      booster='gbtree', n_jobs=8, nthread=None, gamma=0, min_child_weight=1, max_delta_step=0, \
                      subsample=0.8, colsample_bytree=0.8, colsample_bylevel=1, reg_alpha=0, reg_lambda=1)

# When you fit, add eval_metric=f1_eval
# Please don't forget to insert all the .fit arguments required
clf_wine.fit(eval_metric=f1_eval)

Here,您将看到一个有关如何实现自定义目标函数和自定义评估指标的示例

包含以下代码的示例:

# user defined evaluation function, return a pair metric_name, result
# NOTE: when you do customized loss function, the default prediction value is margin
# this may make builtin evaluation metric not function properly
# for example, we are doing logistic loss, the prediction is score before logistic transformation
# the builtin evaluation error assumes input is after logistic transformation
# Take this in mind when you use the customization, and maybe you need write customized evaluation function
def evalerror(preds, dtrain):
    labels = dtrain.get_label()
    # return a pair metric_name, result
    # since preds are margin(before logistic transformation, cutoff at 0)
    return 'error', float(sum(labels != (preds > 0.0))) / len(labels)

指定评估函数作为参数(预测,dtrain)获取dtrain的类型为DMatrix,并返回一个字符串,即浮点数,该浮点数是度量标准和错误的名称。


添加有效的python代码示例

import numpy as np

def _F1_eval(preds, labels):
    t = np.arange(0, 1, 0.005)
    f = np.repeat(0, 200)
    results = np.vstack([t, f]).T
    # assuming labels only containing 0's and 1's
    n_pos_examples = sum(labels)
    if n_pos_examples == 0:
        raise ValueError("labels not containing positive examples")

    for i in range(200):
        pred_indexes = (preds >= results[i, 0])
        TP = sum(labels[pred_indexes])
        FP = len(labels[pred_indexes]) - TP
        precision = 0
        recall = TP / n_pos_examples

        if (FP + TP) > 0:
            precision = TP / (FP + TP)

        if (precision + recall > 0):
            F1 = 2 * precision * recall / (precision + recall)
        else:
            F1 = 0
        results[i, 1] = F1
    return (max(results[:, 1]))

if __name__ == '__main__':
    labels = np.random.binomial(1, 0.75, 100)
    preds = np.random.random_sample(100)
    print(_F1_eval(preds, labels))

如果要实现_F1_eval以专门用于xgboost评估方法,请添加以下内容:

def F1_eval(preds, dtrain):
    res = _F1_eval(preds, dtrain.get_label())
    return 'f1_err', 1-res