我对来自八个独立文件的文本文件的两列进行了数据绘制(如下所示)。我需要找到一种使它更加自动化的方法,以便可以与其他数据一起重新创建。另外,我需要取蓝线的导数,并在同一图形/轴上绘制(拟合)图形。哪种方法最好呢?
答案 0 :(得分:1)
您可以简单地包装已经在函数中编写的代码。也许像这样就足够了:
import pylab as plt
import numpy as np
def compute_derivative(x, y):
# if finite differennces are enough
# https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.diff.html
return x[:-1], np.diff(y)
# otherwise you can use the gradient function of numpy,
# with the second argument as the step of your samples
# take a look here https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.gradient.html
# return x, np.gradient(y, 0.1)
def create_graphs_from_file(filepath):
data = np.loadtxt(filepath)
x = data[:, 0]
y = -1 * data[:, 1]
z = data[:, 3]
derivative_x, derivative_y = compute_derivative(x, y)
fig_title = '{}: Length = 100, Width = 100'.format(filepath)
plt.figure(fig_title)
plt.title(fig_title)
plt.plot(x, y, color='b', label='Drain Current')
plt.plot(x, z, color='r', label='Leak Current')
plt.plot(derivative_x, derivative_y, color='g', label='Derivative of the Drain Current')
plt.xlabel(r'$V_G')
plt.ylabel(r'$I_{DS}')
plt.legend(loc=1)
if __name__ == '__main__':
# list with filepaths of the files you want to plot
files_to_plot = [
'filepath1',
'filepath2',
'filepath3',
]
for f in files_to_plot:
create_graphs_from_file(f)
plt.show()
很显然,您可以根据需要更改compute_derivative
。
您可以查看以下答案: