我的问题与这一问题高度相关: R update() interaction term not dropped
但是,我的预测变量中没有多个类别,因此我不理解我的问题与答案之间的关系。也许我只是不明白...
我想一次减少一个模型简化过程中无关紧要的三向交互项。
但是,会发生以下情况:
model1 <- lme(sum.leafmass ~ stand.td.Sept.2017*stand.wtd.Sept.2017*I((stand.td.Sept.2017)^2)*I((stand.wtd.Sept.2017)^2), random = ~1|block/fence, method="ML", data=subset(Total.CiPEHR, species=="EV"), na.action=na.omit)
model2 <- update(model1,.~.-stand.td.Sept.2017:stand.wtd.Sept.2017:I((stand.td.Sept.2017)^2):I((stand.wtd.Sept.2017)^2))
summary(model2) ##works correctly to eliminate insignificant 4-way interactions
summary(model2)
DF t-value p-value
(Intercept) 4 3.849259 0.0183
stand.td.Sept.2017 4 -1.436666 0.2242
stand.wtd.Sept.2017 4 -2.921806 0.0432
I((stand.td.Sept.2017)^2) 4 4.594303 0.0101
I((stand.wtd.Sept.2017)^2) 4 -0.313197 0.7698
stand.td.Sept.2017:stand.wtd.Sept.2017 4 -1.301935 0.2629
stand.td.Sept.2017:I((stand.td.Sept.2017)^2) 4 1.853451 0.1374
stand.wtd.Sept.2017:I((stand.td.Sept.2017)^2) 4 4.354757 0.0121
stand.td.Sept.2017:I((stand.wtd.Sept.2017)^2) 4 -0.028199 0.9789
stand.wtd.Sept.2017:I((stand.wtd.Sept.2017)^2) 4 1.598564 0.1852
I((stand.td.Sept.2017)^2):I((stand.wtd.Sept.2017)^2) 4 -1.683214 0.1676
stand.td.Sept.2017:stand.wtd.Sept.2017:I((stand.td.Sept.2017)^2) 4 1.972616 0.1198
stand.td.Sept.2017:stand.wtd.Sept.2017:I((stand.wtd.Sept.2017)^2) 4 -1.635314 0.1773
stand.td.Sept.2017:I((stand.td.Sept.2017)^2):I((stand.wtd.Sept.2017)^2) 4 2.190518 0.0936
stand.wtd.Sept.2017:I((stand.td.Sept.2017)^2):I((stand.wtd.Sept.2017)^2) 4 -0.968249 0.3877
##attempt to remove insignificant 3-way interaction
model3 <- update(model2,.~.,-stand.wtd.Sept.2017:I((stand.td.Sept.2017)^2):I((stand.wtd.Sept.2017)^2))
summary(model3)
DF t-value p-value
(Intercept) 4 3.849259 0.0183
stand.td.Sept.2017 4 -1.436666 0.2242
stand.wtd.Sept.2017 4 -2.921806 0.0432
I((stand.td.Sept.2017)^2) 4 4.594303 0.0101
I((stand.wtd.Sept.2017)^2) 4 -0.313197 0.7698
stand.td.Sept.2017:stand.wtd.Sept.2017 4 -1.301935 0.2629
stand.td.Sept.2017:I((stand.td.Sept.2017)^2) 4 1.853451 0.1374
stand.wtd.Sept.2017:I((stand.td.Sept.2017)^2) 4 4.354757 0.0121
stand.td.Sept.2017:I((stand.wtd.Sept.2017)^2) 4 -0.028199 0.9789
stand.wtd.Sept.2017:I((stand.wtd.Sept.2017)^2) 4 1.598564 0.1852
I((stand.td.Sept.2017)^2):I((stand.wtd.Sept.2017)^2) 4 -1.683214 0.1676
stand.td.Sept.2017:stand.wtd.Sept.2017:I((stand.td.Sept.2017)^2) 4 1.972616 0.1198
stand.td.Sept.2017:stand.wtd.Sept.2017:I((stand.wtd.Sept.2017)^2) 4 -1.635314 0.1773
stand.td.Sept.2017:I((stand.td.Sept.2017)^2):I((stand.wtd.Sept.2017)^2) 4 2.190518 0.0936
stand.wtd.Sept.2017:I((stand.td.Sept.2017)^2):I((stand.wtd.Sept.2017)^2) 4 -0.968249 0.3877
##3-way interaction term still there.
互动项为什么不放弃?预测变量是连续的,因此应该彼此独立,对吧?
有人请解释一下我是否对这里的基本知识不了解...
答案 0 :(得分:0)
解决了我自己的问题。
虚拟语法错误。 (在。〜。部分中有不正确的逗号)
###Incorrect syntax.
model3 <- update(model2,.~.,-stand.wtd.Sept.2017:I((stand.td.Sept.2017)^2):I((stand.wtd.Sept.2017)^2))
###Correct syntax.
model3 <- update(model2,.~.-stand.wtd.Sept.2017:I((stand.td.Sept.2017)^2):I((stand.wtd.Sept.2017)^2))