我想将python中的c函数与ctypes一起使用,这里是c函数:
#include "mex.h"
#include "math.h"
void modwtj(double *Vin, int N, int j, int L, double *ht, double *gt,
double *Wout, double *Vout)
{
int k, n, t;
for (t = 0; t < N; t++) {
k = t;
Wout[t] = ht[0] * Vin[k];
Vout[t] = gt[0] * Vin[k];
for (n = 1; n < L; n++) {
k -= (int) pow(2.0, (double) j - 1.0);
if (k < 0) {
k += N;
}
Wout[t] += ht[n] * Vin[k];
Vout[t] += gt[n] * Vin[k];
}
}
}
这里是python代码,我为输出初始化了Wout和Vout,但是我注意到modwtj函数没有更改它们,我如何正确分配输出?
import ctypes
import numpy as np
lib = ctypes.CDLL('/import_modwt/libmodwtj.so')
Vin=data[0,:,0]
ht=np.asarray([-0.0075,-0.0233,0.0218]).astype(np.double)
gt=np.asarray([0.1629,0.5055,0.4461]).astype(np.double)
N = int(600)
j = 1 # scale
coeff_length = int(3) # filter length
Wout = np.random.rand(N,1).astype(np.double)
Vout = np.random.rand(N,1).astype(np.double)
array_type_a = ctypes.c_double * N
array_type_ht = ctypes.c_double * coeff_length
array_type_gt = ctypes.c_double * coeff_length
array_type_out = ctypes.c_double * N
lib.modwtj.argtypes = [ctypes.POINTER(ctypes.c_double),
ctypes.c_int,
ctypes.c_int,
ctypes.c_int,
ctypes.POINTER(ctypes.c_double),
ctypes.POINTER(ctypes.c_double),
ctypes.POINTER(ctypes.c_double),
ctypes.POINTER(ctypes.c_double)]
lib.modwtj.restype = None
lib.modwtj(array_type_a(*Vin),
ctypes.c_int(N),
ctypes.c_int(j),
ctypes.c_int(coeff_length),
array_type_ht(*ht),
array_type_gt(*gt),
array_type_out(*Wout),
array_type_out(*Vout))
答案 0 :(得分:0)
问题在这里:array_type_out(*Wout)
。这需要Wout
并创建一个array_type_out
实例,但是它从Wout
复制值,因此Wout
和array_type_out(*Wout)
将是独立的(修改一个不会影响)。
解决方案是从Wout
({{}}修改的数据中构造输出 np 数组(Vout
和lib.modwtj
)。 {1}}和array_type_out(*Wout)
应该已经保存到变量中了。
我准备了一个“小”例子。
modwtj.c :
array_type_out(*Vout)
code.py :
#if defined(_WIN32)
# define DLL_EXPORT __declspec(dllexport)
#else
# define DLL_EXPORT
#endif
DLL_EXPORT void modwtj(const double *vIn, int n, int j, int l, const double *ht, const double *gt, double *wOut, double *vOut) {
int batches = n / l, last = n % l, i = 0;
for (i = 0; i < batches; i++)
for (int k = 0; k < l; k++)
{
wOut[i * l + k] = vIn[i * l + k] + ht[k] + j;
vOut[i * l + k] = vIn[i * l + k] + gt[k] + j;
}
for (int k = 0; k < last; k++) {
wOut[i * l + k] = vIn[i * l + k] + ht[k] + j;
vOut[i * l + k] = vIn[i * l + k] + gt[k] + j;
}
}
注释:
import sys
import ctypes
import numpy as np
modwtj_lib = ctypes.CDLL("libmodwtj.so")
modwtj_func = modwtj_lib.modwtj
modwtj_func.argtypes = [
ctypes.POINTER(ctypes.c_double), ctypes.c_int, ctypes.c_int, ctypes.c_int,
ctypes.POINTER(ctypes.c_double), ctypes.POINTER(ctypes.c_double),
ctypes.POINTER(ctypes.c_double), ctypes.POINTER(ctypes.c_double)
]
modwtj_func.restype = None
data_array_dim = 10 # Size for v_in, w_out, v_out arrays
coeff_array_dim = 4 # Size for ht, gt arrays
scale = 1
double_data_array = ctypes.c_double * data_array_dim
double_coeff_array = ctypes.c_double * coeff_array_dim
def print_ctypes_array(array, array_name=None):
print("{:s}en: {:d}:\n {:s}".format(str(array_name) + " - l" if array_name else "L", len(array), ", ".join(["{:.3f}".format(item) for item in array])))
def print_ctypes_arrays(*arrays_data):
print("\nPrinting ctypes arrays...")
for array_data in arrays_data:
array, array_name = array_data
print_ctypes_array(array, name=array_name)
def print_np_array(array, array_name=None):
print("{:s}{:s}".format(str(array_name) + ": " if array_name else "", repr(array)))
"""
def test_no_np():
print("\n{:s}".format(test_no_np.__name__))
v_in = double_data_array(*range(1, 1 + data_array_dim))
ht = double_coeff_array(*(1,) * coeff_array_dim)
gt = double_coeff_array(*(2,) * coeff_array_dim)
w_out = double_data_array()
v_out = double_data_array()
print_ctypes_arrays((v_in, "v_in"), (ht, "ht"), (gt, "gt"), (w_out, "w_out"), (v_out, "v_out"))
modwtj_func(v_in, data_array_dim, scale, coeff_array_dim, ht, gt, w_out, v_out)
print_ctypes_arrays((w_out, "w_out"), (v_out, "v_out"))
"""
def test_np():
print("\n{:s}".format(test_np.__name__))
v_in_np = np.asarray(range(1, 1 + data_array_dim)).astype(np.double)
ht_np = np.asarray([1] * coeff_array_dim).astype(np.double)
gt_np = np.asarray([2] * coeff_array_dim).astype(np.double)
w_out_np = np.asarray([0] * data_array_dim).astype(np.double)
v_out_np = np.asarray([0] * data_array_dim).astype(np.double)
v_in = double_data_array(*v_in_np)
ht = double_coeff_array(*ht_np)
gt = double_coeff_array(*gt_np)
w_out = double_data_array(*w_out_np)
print("TESTING arrays relation")
print_np_array(v_out_np, array_name="v_out_np")
v_out = double_data_array(*v_out_np) # The data from v_out_np has been copied to v_out, so the 2 arrays are detached now, meaning that modifying one will not impact the other
print_ctypes_array(v_out, array_name="v_out")
v_out_np[1] = 3
v_out[2] = 5
print_np_array(v_out_np, array_name="v_out_np")
print_ctypes_array(v_out, array_name="v_out")
print("DONE testing")
modwtj_func(v_in, data_array_dim, scale, coeff_array_dim, ht, gt, w_out, v_out)
w_out_np = np.asarray(w_out).astype(np.double)
v_out_np = np.asarray(v_out).astype(np.double)
# Create the np arrays from modified data
print_np_array(w_out_np, array_name="w_out_np")
print_np_array(v_out_np, array_name="v_out_np")
def main():
#test_no_np()
test_np()
if __name__ == "__main__":
print("Python {:s} on {:s}\n".format(sys.version, sys.platform))
main()
的输出数组${OUT_ARRAY}[i] = vIn[i] + ${COEFF_ARRAY}[i] + j
(如果短于${COEFF_ARRAY}
,则复制vIn
):
${OUT_ARRAY}, ${COEFF_ARRAY}
wOut, ht
vOut, gt
调用后的第二行(在modwtj_func
中)输出:
test_np