不同的结果Gamma广义线性模型R和SPSS

时间:2018-07-19 12:42:11

标签: r spss difference

更新:如果我将SPSS中的参数估计方法更改为“混合”,将比例参数方法更改为“皮尔逊卡方”,则SPSS和R的p值和SE相似。现在有没有人如何在R中更改这些设置以及这些设置的实际含义?


我正在尝试使用R中的伽马日志链接功能执行GLM,以分析多重插补数据集。

但是,当我比较R和SPSS中相同分析的结果时,它们有很大不同。此示例位于非输入数据集中,以使事情更易于解释。 SPSS结果如下:

Parameter Estimates                         
Parameter   B   Std. Error  95% Wald Confidence Interval          Hypothesis Test       
        Lower   Upper   Wald Chi-Square df  Sig.
(Intercept) 3,263   ,2499   2,774   3,753   170,571 1   ,000
[Comorb=1]  -,631   ,1335   -,893   -,369   22,331  1   ,000
[Comorb=2]  -,371   ,1473   -,660   -,083   6,358   1   ,012
[Comorb=3]  0a  .   .   .   .   .   .
PAIDhoog     ,257   ,1283   ,006    ,509    4,023   1   ,045
PHQhoog    ,039 ,1504   -,256   ,334    ,068    1       ,794
[etndich=1,00]  -,085   ,1125   -,306   ,135    ,575    1   ,448
[etndich=2,00]  0a  .   .   .   .   .   .
Leeftijd    ,009    ,0035   ,002    ,016    6,588   1   ,010
(Scale) ,613b   ,0470   ,528    ,712            
Dependent Variable: totaalhealthcareutilization
Model: (Intercept), Comorb, PAIDhoog, PHQhoog, etndich, Leeftijd                            
a Set to zero because this parameter is redundant.                          
b Maximum likelihood estimate.                          

在R中进行相同的分析会得出以下结果:

  Call:
glm(formula = (totaalhealthcareutilization) ~ PAIDhoog + PHQhoog + 
   Comorb + Leeftijd + etndich, family = Gamma(link = log), 
   data = F)

Deviance Residuals: 
   Min       1Q   Median       3Q      Max  
-2.1297  -0.7231  -0.3018   0.2075   3.1365  

Coefficients:
         Estimate Std. Error t value             Pr(>|t|)    
(Intercept)  3.006208   0.273817  10.979 < 0.0000000000000002 ***
PAIDhoog     0.201881   0.131777   1.532               0.1264    
PHQhoog      0.126989   0.157416   0.807               0.4203    
Comorbgeen  -0.638842   0.144459  -4.422            0.0000128 ***
Comorb1     -0.348187   0.158484  -2.197               0.0286 *  
Leeftijd     0.007311   0.003534   2.069               0.0392 *  
etndich      0.151836   0.118872   1.277               0.2023    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for Gamma family taken to be 0.9432289)

    Null deviance: 286.49  on 381  degrees of freedom
Residual deviance: 243.01  on 375  degrees of freedom
  (71 observations deleted due to missingness)
AIC: 3156

Number of Fisher Scoring iterations: 6

这怎么可能?即使我在R中使用na.omit或na.exclude,结果仍会有所不同。我在R中使用了“ relevel”功能,以确保对类别变量使用相同的引用类别。

我希望您能知道我在R中做错了什么。

 This is what a sample of my data looks like: 

   verrichtingen verpleegkanders Leeftijd HbA1c  BMI Type_Treat DurationDM
1               0               0       26    69 26.7    Insulin          5
2               0               0       69    75 34.5    Insulin         17
3               0               0       67    62 24.3    Insulin          1
4               6               0       38    96   NA    Insulin         10
5               0               0       29    NA 19.1    Insulin         25
6               0               0       50    86 37.9       Both          9
7               1               0       29    44 29.1       Both         33
451             4               0       68   113 37.9       Both         11
452            21               1       57    62 21.5    Insulin          1
453             0               0       37    54 25.4       Both         14
         Socstatus PAID1 PAID2 PAID3 PAID4 PAID5 PAIDtot PHQ1 PHQ2 PHQ3
1    wel achterstandsw     0     1     2     1     0       4    0    0    0
2   geen achterstandsw     2     1     1     2     0       6    0    0    0
3                 <NA>     0     0     0     0     0       0    0    0    0
4   geen achterstandsw     0     0     1     1     0       2    1    0    3
5   geen achterstandsw     0     0     0     0     0       0    1    1    3
6    wel achterstandsw     0     1     0     2     0       3    2    0    3
7   geen achterstandsw     1     1     2     3     0       7    1    1    3
451 geen achterstandsw     0     0     1     0     0       1    0    0    0
452  wel achterstandsw     1     0     4     1     0       6    2    0    3
453  wel achterstandsw     1     1     2     3     2       9    1    0    1
PHQ4 PHQ5 PHQ6 PHQ7 PHQ8 PHQ9 Geslacht        Etnicit HAPOH Bedrijfsarts MW
1      1    1    0    0    0    0    vrouw     Overigwest    NA           NA  NA
2      1    0    0    1    1    0      man            Mar    NA           NA NA
3      0    0    0    0    0    0      man     Overigwest    NA           NA NA
4      3    1    1    1    1    0    vrouw Overignietwest    NA           NA NA
5      0    0    0    3    0    0      man     Overigwest    NA           NA NA
6      1    1    1    0    0    0      man           Turk    NA           NA NA
7      3    0    0    2    0    0    vrouw     Overigwest    NA           NA NA
451    0    0    0    0    0    0      man              4    NA           NA NA
452    3    0    0    1    0    0    vrouw            Mar    NA           NA NA
453    2    2    0    0    0    0    vrouw            Mar    NA           NA NA
FysioErgo Diet Psychiat Psychol Dvk VPtot Internist Specialist ICUopname
1          NA    5        0       0   5     5         2          3         0
2          NA    2        0       0   2     2         3          8         0
3          NA    0        0       0   1     1         2          3         0
4          NA    0        1       2  11    11         6         25         0
5          NA    0        0       0   4     4         2          6         0
6          NA    1        0       0   2     2         2          0         0
7          NA    3        0       0   4     4         2          3         0
451        NA    0        0       0   1     1         3          7         0
452        NA    2        0       0   4     5         0         25         4
453        NA    1        0       0   2     2         0          5         0
Opnamegewoon SEH Comorb DMtype PAIDtotaal PHQtotaal PAIDhoog PHQhoog
1              0   0   geen    DM1          4         2        0       0
2              0   0   geen    DM2          6         3        0       0
3              0   0   geen    DM1          0         0        0       0
 4              1   0   geen    DM2          2        NA        0      NA
5              0   0   geen    DM1          0         8        0       0
6              0   0   geen    DM2          3         8        0       0
7              0   0   geen    DM2          7        10        0       0
451           18   2   <NA>    DM2          1         0        0       0
452           34   3   <NA>    DM1          6         9        0       0
453            0   0   <NA>    DM2          9         6        1       0
interactPHQPAID paidtotaalimp PHQtotaalimp GADtotaalimp PAIDhoogimp
1                 0             4            2            1           0
2                 0             6            3            0           0
3                 0             0            0            0           0
4                 0             2           11            2           0
5                 0             0            8            0           0
6                 0             3            8            0           0
7                 0             7           10            3           0
451               0             1            0            0           0
452               0             6            9            0           0
453               0             9            6            1           1
PHQhoogimp GADimphoog kostenopnames kosteninternist kostenspecialist
1            0          0             0             160              240
2            0          0             0             240              640
3            0          0             0             160              240
4            0          0           443             480             2000
5            0          0             0             160              480
6            0          0             0             160                0
7            0          1             0             160              240
451          0          0          7974             240              560
452          0          0         15062               0             2000
453          0          0             0               0              400
kostenhuisarts kostenMW kostenfysioergo kostendvk kostendietist
1               NA       NA              NA       240           240
2               NA       NA              NA        96            96
3               NA       NA              NA        48             0
4               NA       NA              NA       528             0
5               NA       NA              NA       192             0
6               NA       NA              NA        96            48
7               NA       NA              NA       192           144
451             NA       NA              NA        48             0
452             NA       NA              NA       192            96
453             NA       NA              NA        96            48
totaalkosten jaarHAPOH jaarbedrijfsarts jaarMW jaarfysioergo
1             NA        NA               NA     NA            NA
2             NA        NA               NA     NA            NA
3             NA        NA               NA     NA            NA
4             NA        NA               NA     NA            NA
5             NA        NA               NA     NA            NA
6             NA        NA               NA     NA            NA
7             NA        NA               NA     NA            NA
451           NA        NA               NA     NA            NA
452           NA        NA               NA     NA            NA
453           NA        NA               NA     NA            NA
totaalverbruikjaar kostenHAjaar kostenMWjaar kostenjaarfysioergo
1                   NA           NA           NA                  NA
2                   NA           NA           NA                  NA
3                   NA           NA           NA                  NA
4                   NA           NA           NA                  NA
5                   NA           NA           NA                  NA
6                   NA           NA           NA                  NA
7                   NA           NA           NA                  NA
451                 NA           NA           NA                  NA
452                 NA           NA           NA                  NA
453                 NA           NA           NA                  NA
kostenopnameICU kostenpsycholoog kostenpsychiater kostenvpanders
1                 0                0                0              0
2                 0                0                0              0
3                 0                0                0              0
4                 0              188               94              0
5                 0                0                0              0
6                 0                0                0              0
7                 0                0                0              0
451               0                0                0              0
452            8060                0                0             48
453               0                0                0              0
kostenverrichtingen totaalutilization kostenseh totaalkostennieuw hypoangst
1                     0                NA         0               880         1
2                     0                NA         0              1072         1
3                     0                NA         0               448         0
4                   876                NA         0              4609         0
5                     0                NA         0               832         0
6                     0                NA         0               304         1
7                   146                NA         0               882         5
451                 584                NA       518              9924         0
452                3066                NA       777             29301         0
453                   0                NA         0               544         3
contactprimarycare contactsecondarycare totaalhealthcareutilization
1                   NA                   15                          15
2                   NA                   15                          15
3                   NA                    6                           6
4                   NA                   52                          52
5                   NA                   12                          12
6                   NA                    5                           5
7                   NA                   13                          13
451                 NA                   35                          35
452                 NA                   94                          94
453                 NA                    8                           8
kostenprimarycare kostensecondarycare totaalkostenhealthcare etndich
1                  NA                 880                     NA       1
2                  NA                1072                     NA       2
3                  NA                 448                     NA       1
4                  NA                4609                     NA       2
5                  NA                 832                     NA       1
6                  NA                 304                     NA       2
7                  NA                 882                     NA       1
451                NA                9924                     NA       1
452                NA               29301                     NA       2
453                NA                 544                     NA       2

1 个答案:

答案 0 :(得分:2)

以下内容再现了您的SPSS输出。

请注意,正确设置分类变量的参考级别以匹配SPSS编码完全是问题。在R中,第一级将用作参考级。

df <- within(F, {
    Comorb <- relevel(Comorb, ref = "2 of meer");         # Reference level = "2 of meer"
    etndich <- factor(etndich, levels = 2:1);             # Reference level = 2
    PAIDhoog <- factor(PAIDhoog, levels = 1:0);           # Reference level = 1
    PHQhoog <- factor(PHQhoog, levels = 1:0);             # Reference level = 1
})

fit <- glm(formula = totaalhealthcareutilization ~ PAIDhoog + PHQhoog +
    Comorb + Leeftijd + etndich, family = Gamma(link = log),
    data = df)

summary(fit)
#
#Call:
#glm(formula = totaalhealthcareutilization ~ PAIDhoog + PHQhoog +
#    Comorb + Leeftijd + etndich, family = Gamma(link = log),
#    data = df)
#
#Deviance Residuals:
#    Min       1Q   Median       3Q      Max
#-2.1297  -0.7231  -0.3018   0.2075   3.1365
#
#Coefficients:
#             Estimate Std. Error t value Pr(>|t|)
#(Intercept)  3.638751   0.267741  13.591  < 2e-16 ***
#PAIDhoog0   -0.201881   0.131777  -1.532   0.1264
#PHQhoog0    -0.126989   0.157416  -0.807   0.4203
#Comorbgeen  -0.638842   0.144459  -4.422 1.28e-05 ***
#Comorb1     -0.348187   0.158484  -2.197   0.0286 *
#Leeftijd     0.007311   0.003534   2.069   0.0392 *
#etndich1    -0.151836   0.118872  -1.277   0.2023
#---
#Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
#(Dispersion parameter for Gamma family taken to be 0.9432289)
#
#    Null deviance: 286.49  on 381  degrees of freedom
#Residual deviance: 243.01  on 375  degrees of freedom
#  (71 observations deleted due to missingness)
#AIC: 3156
#
#Number of Fisher Scoring iterations: 6

与SPSS输出进行比较

Parameter Estimates                         
Parameter   B   Std. Error  95% Wald Confidence Interval           Hypothesis Test      
        Lower   Upper   Wald Chi-Square df  Sig.
(Intercept) 3,639   ,2177   3,212   4,065   279,350 1   ,000
[PAIDhoog=0]    -,202   ,1056   -,409   ,005    3,657   1   ,056
 [PAIDhoog=1]   0a  .   .   .   .   .   .
[PHQhoog=0] -,127   ,1260   -,374   ,120    1,015   1   ,314
[PHQhoog=1] 0a  .   .   .   .   .   .
[Comorb=1]  -,639   ,1148   -,864   -,414   30,940  1   ,000
[Comorb=2]  -,348   ,1250   -,593   -,103   7,758   1   ,005
[Comorb=3]  0a  .   .   .   .   .   .
[etndich=1,00]  -,152   ,0936   -,335   ,032    2,633   1   ,105
[etndich=2,00]  0a  .   .   .   .   .   .
Leeftijd    ,007    ,0028   ,002    ,013    6,599   1   ,010
(Scale) ,581b   ,0387   ,510    ,662            
Dependent Variable: totaalhealthcareutilization
Model: (Intercept), PAIDhoog, PHQhoog, Comorb, etndich, Leeftijd                            
a Set to zero because this parameter is redundant.                          
b Maximum likelihood estimate.                       

关于SPSS和glm输出差异的更多评论

  1. 首先要注意的是,来自SPSS和R的参数估计是相同的:两个参数集都对应于给定模型和最大似然(ML)估计的(唯一)集。数据。

  2. 在R中,标准误差简单地表示为估计协方差矩阵对角元素的平方根。

    sqrt(diag(vcov(fit)))
    #(Intercept)   PAIDhoog0    PHQhoog0  Comorbgeen     Comorb1    Leeftijd
    #0.267740656 0.131776659 0.157416176 0.144458874 0.158484265 0.003534017
    #   etndich1
    #0.118871533
    

    请注意,这些值与summary(fit)中报告的值相同。

    我不了解SPSS,但似乎SPSS的se对应于方差-协方差矩阵对角元素的缩放的平方根。

    置信区间基于参数和方差-协方差估计;如前所述,参数估计是相同的,但是SPSS使用缩放的方差-协方差矩阵,因此SPSS和R输出中参数的置信区间将根据所述缩放因子而不同。

    令人遗憾的是,SPSS的文档分散,因此我不确定 SPSS如何缩放其方差-协方差矩阵。


样本数据

F <- structure(list(HbA1c = c(69, 75, 62, 96, NA, 86, 44, 49, NA, 63, 43, 75, 48, 56, 79, 78, 67, 66, 75, 67, 65, 66, 34, 62, 79, 60, 91, 51, 84, 72, 65, NA, NA, 62, 61, 69, 63, NA, 85, 38, 42, 80, 59, 96, 59, 49, 62, 98, 71, 78, 50, 43, 44, 69, 56, 38, 59, 74, 115, 69, 67, 51, NA, 107, 71, 86, 78, 41, 60, 59, 74, 73, 49, 34, 71, 57, 55, 74, 67, 61, 48, 59, 70, NA, 55, 72, 69, 82, 40, 58, NA, 53, 46, 69, 60, 39, 76, 69, 61, 86, 58, 63, 66, 103, 73, 54, 59, 46, 58, 70, 57, 53, 49, 53, 58, 71, 60, 76, 64, 97, 60, 49, 53, 44, 53, 73, 59, 75, 61, 55, 68, 56, 51, 91, 92, 76, 51, 55, 61, 83, 52, 62, 71, 75, 54, 64, 90, 65, NA, 69, 70, 70, 59, 62, 60, 63, 58, 58, 63, 60, 49, 62, 95, 42, 99, 67, 117, 68, 55, 55, 70, 60, 61, 91, 33, 89, 60, 47, 62, 72, 40, 88, 59, 56, 57, 59, 74, 41, 53, 76, 48, 73, 65, 96, 58, 55, 67, 45, 45, 69, 72, 44, 59, 43, 90, 69, 69, 71, 93, 42, 87, 54, 83, 60, 48, NA, 53, 56, 57, 77, 63, NA, 63, 60, 68, 51, 48, 65, 61, 79, 63, 62, 53, 67, 53, 53, 63, 55, 61, 51, 53, 46, NA, 78, 76, 73, 51, 49, 68, 86, 71, 55, 57, 113, 63, 68, 94, NA, 38, 50, NA, 42, 60, 57, 49, 60, 81, 69, 55, 82, 64, 55, 74, 71, 56, 60, NA, 47, 49, 98, 55, 80, 71, 69, 35, 53, 90, 64, 82, 132, 64, 70, 65, 34, 65, 54, NA, 68, 58, 76, 82, 66, 74, 66, NA, 54, 53, 78, 62, 88, 69, 49, 83, 54, 55, 56, 66, 84, 47, 82, 53, 62, 163, 41, 55, 89, 76, 81, 45, 50, 89, 72, 90, 47, 38, 83, NA, 53, 74, 55, 47, 49, 56, 74, 107, 86, 48, 59, 86, 44, 55, 64, 81, 66, 63, 98, 51, NA, 60, 50, 55, 52, 79, 58, 50, 89, NA, 36, 50, 70, NA, 86, 57, 60, 78, 53, 70, 79, 49, 78, 83, 66, 57, 62, 80, 70, NA, 67, 80, 46, 79, 47, 145, 87, 53, 65, 73, 75, 53, 50, 71, NA, 65, 106, 123, 51, 55, 43, 48, 86, 61, 64, 55, 71, 61, 96, 80, 69, 66, 74, 88, 48, 68, 55, 52, 58, 69, 66, 44, 45, 64, 84, 72, 49, NA, 71, 70, 104, 78, 73, 47, 75, 45, 57, 88, 86, 55, 72, 47, 53, 113, 62, 54), BMI = c(26.7, 34.5, 24.3, NA, 19.1, 37.9, 29.1, 27.1, NA, 21.1, 48.5, 26.2, 26.9, NA, 25.5, 25.3, 44.3, 25.2, 26.7, NA, 25.5, 25.9, 31.2, 33, 21.8, 23.7, 32, 23.6, 32.4, 29.7, NA, 22.9, 24.4, 33.9, 35.4, 41.2, 20.4, NA, 30.1, 21, NA, NA, 29.5, 16.6, 38.1, 23.9, 19.1, 35.4, 24.2, NA, 26.1, 20, 28.7, 30.7, 25.4, 29.6, 25.4, 26.2, 18.3, 31, NA, NA, 31.5, 32, 35.6, 24.3, 33.3, 35.5, NA, 24.1, NA, 33.4, 28.4, NA, 25.9, 26.7, 35.5, 31.6, 25, 25.5, 22.2, 22.3, 23.4, 35.3, 26.1, 32.6, 20.9, 35.9, 29.1, 32.8, 32.2, 28.9, 28.9, 28.8, 19.7, 29.4, 28.8, 28.2, 20.9, 33.5, 17.6, 38.6, 27.1, NA, 29, 25.6, 22.5, 30.6, 35.6, 32.5, 23.4, 27.2, 23.6, 26.6, 23.5, 30.3, 30.6, 26.4, 38.1, 34.7, NA, 24.6, 22.2, 39.8, 23, 35.8, 31.4, 22.8, 29.3, 27, 31.1, NA, NA, 32.4, 36, NA, 52.8, 22, 27.1, 23.3, 22.7, 25, 42.6, 30.2, 25.3, 30.5, 25.3, 28.4, 30.1, 32.4, NA, 32, 18.8, 23.1, 28.5, 25.1, 22.8, 23.6, 18.5, NA, 27.1, 25.3, 19.8, 20.8, 32.7, 30.1, 34.8, 37.5, NA, 28.1, 46, 23.5, 26.3, 22.2, 28.2, 29.3, 24.2, 29.7, 28.9, 28, 31.3, 28.6, 29.1, 28.4, 23.1, 34.9, 22.7, 26.9, 28.9, 35.9, 23, 25.8, 22.8, 19.2, 27.9, 29.2, 35, 25.1, 20.5, 23.9, 34.3, 23.1, 25.1, 20.5, 24.6, 24.4, 23.7, 22.4, 40.1, 21.9, 50, 34.2, 30.5, 20.7, 29.3, 32.6, 32.1, 23.9, NA, 34, 22.6, 30.2, 28.6, 27.5, 33, 24, 28.8, NA, 32.8, 21.8, NA, 37.8, 26.4, 36.2, 20.8, 24.4, 31, 31.9, 27.6, 25.4, 22.7, NA, 27.7, 32.4, 34, 26.2, 26.7, 23.7, 32, 24.1, 35.8, 23.5, 38.9, 35.3, NA, 23.9, 30.2, 24.4, 24.4, 27.9, NA, 25.7, 25.6, 25.8, 47.9, 25.6, 36.1, NA, 24.2, 24.8, 21.4, 22.3, 24.3, 24.7, 22.5, 25.9, 30.1, 27.4, 27.8, 22.6, 24.4, NA, 33.8, 41.9, 21.4, 32.5, 41.1, 27.2, NA, 37.8, 29, 23.2, 28.7, 25.2, 32.6, 29, 24.4, 23.1, 22.8, 23.1, 39.8, 26.6, 25.3, 53.5, 25, 22.9, 22.2, 30.2, 27.4, 27.4, NA, 25.2, 22.4, 20.2, 23.9, 23.3, 31.2, 24, 23.5, 38.8, 30, 30.6, 28.9, 23.1, 34.4, 28.7, 30.8, 21.6, 24.1, 25.5, 39.2, 29.3, 36.2, 28.3, NA, NA, NA, 29.5, 33.1, 23.4, 23.5, 25.1, 34.4, 24.5, 29.7, 22.2, 25.5, 23.3, 37.5, 26.8, 44.5, 32.4, 26.1, 21.4, 26.5, 32.7, 26.9, NA, 27.4, 36.3, 25.1, 37.7, NA, 27.6, 24.2, 46.9, 30.8, 29.3, 25.4, 35.7, 36.8, 35, 22.3, 28.3, 20.4, 25, 35, NA, 39.4, 25.2, 22.5, 34.5, NA, 21.6, 30.1, 25, NA, 28.3, 19.7, 22.3, 33.2, NA, 24.6, 23.9, 22.8, 24.1, 31.7, 28.4, 34.5, 30.1, 33.3, 28, 38, 35.9, 30.6, 33.5, 29.5, 21.4, 24.4, 27.5, 31.7, 23.8, NA, 21.8, 28.7, 33.5, 23.5, 27.3, 28.7, NA, 25.6, 26.7, 44.8, 26.2, 27.1, 39.7, 24.1, 21.3, 29.5, 30, NA, 27, NA, 23.6, 22.3, 32.6, 51.9, 27.7, 28.7, 35.2, 27.2, 29.6, 22.8, 19.6, 25.7, 28.3, 31.2, 21.7, 36.2, 26.9, 37.9, 21.5, 25.4), Comorb = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, NA, NA, NA), .Label = c("2 of meer", "geen", "1"), class = "factor"), PAIDhoog = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, NA, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, NA, NA, NA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, NA, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1), PHQhoog = c(0, 0, 0, NA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, NA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, NA, 0, 0, 0, 0, 0, 0, 0, 0, 0, NA, 0, 0, NA, 0, 0, 0, 0, 1, NA, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, NA, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, NA, 0, 0, 0, NA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, NA, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, NA, 0, NA, 0, 0, 0, 0, 0, 0, 0, NA, 0, 0, NA, 0, NA, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, NA, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, NA, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, NA, NA, 1, 0, 1, NA, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, NA, 0, 0, NA, NA, 0, NA, 0, 0, NA, 0, 0, 0, 0, 0, NA, 0, 0, NA, 0, 0, 1, 0, 0, NA, 0, 0, 0, 0, 1, 1, 0, 1, NA, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, NA, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, NA, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, NA, NA, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, NA, 0, NA, 0, 0, 0, 0, NA, 0, NA, 0, 0, 0, 0, 0, 0, 0, 0, 0, NA, 1, 1, 1, 0, 1, NA, NA, 0, 1, 0, 0, 1, 1, NA, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, NA, 0, 0, 0, 0, 0, 0, 1, NA, 0, 0, NA, 0, 0, 0, 0, 0, 1, NA, 0, 1, 1, 0, 0, NA, 0, 0, 1, 1, 0, 0, 0, NA, 0, 1, 0, 0, 0, 0), totaalhealthcareutilization = c(15, 15, 6, 52, 12, 5, 13, 15, 13, 8, 10, 4, 9, 8, 6, 5, 8, 42, 15, 21, 6.3, 9, 5, 5, 14, 24, 8, 15, 25, 12, 29, 21, 6, 11, 8, 7, 29, 7, 7, 19, 14, 25, 16, 7, 20, 13, 17, 12, 5, NA, 9, 11, 14, 57, 12, 10, 37, 8, 12, 57, 8, 11, 14, 11, 49, 10, 10, 11, 19, 20, 21, 5, 1, 2, 2, 3, 3, 6, 4, 3, 4, 6, 5, 4, 4, 5, 7, 6, 6, 8, 5, 7, 8, 5, 6, 6, 6, 8, 7, 6, 6, 9, 11, 7, 9, 7, 7, 7, 7, 8, 10, 10, 10, 9, 9, 9, 11, 8, 10, 9, 9, 11, 13, 8, 12, 12, 9, 11, 7, 8, 10, 10, 9, 10, 10, 12, 12, 16, 9, 5, 10, 7, 13, 13, 13, 15, 16, 11, 11, 17, 13, 12, 22, 19, 15, 14, 11, 12, 19, 13, 15, 13, 14, 11, 17, 12, 17, 10, 13, 15, 12, 13, 13, 20, 16, 21, 17, 25, 22, 18, 18, 17, 15, 19, 10, 15, 20, 33, 22, 26, 23, 27, 20, 21, 21, 13, 24, 45, 27, 27, 19, 19, 25, 43, 16, 16, 13, 24, 29, 17, 24, 25, 32, 27, 29, 22, 35, 56, 26, 45, 23, 54, 26, 33, 23, 39, 35, 24, 36, 37, 37, 74, 53, 36, 60, 33, 35, 26, 44, 78, 22, 26, 77, 62, 121, 51, 28, 68, 63, 43, 64, 81, 120, 95, 98, 23, 11, 21, 10, 7, 41, 7, 33, 6, 40, 20, 2, 31, 23, 23, 13, 68, 9, 8, 41, 19, 27, 29, 46, NA, 35, 16, 12, 9, 14, 20, 7, 2, 4, 6, 6, 6, 4, 9, 6, 8, 9, 12, 9, 7, 8, 12, 11, 11, 14, 12, 14, 12, 16, 15, 22, 23, 19, 11, 12, 13, 17, 18, 19, 27, 15, 9, 17, 18, 19, 17, 19, 12, 16, 54, 21, 30, 23, 25, 24, 37, 35, 27, 47, 22, 27, 27, 30, 32, 32, 31, 39, 28, 36, 54, 50, 45, 42, 88, 56, 63, 82, 60, 70, 139, 122, 71, 130, 84, 33, 111, 111, 246, 157, 54, 24, 41, 22, 7, 33, 15, 9, 6, 16, 67, 3, 22, 48, 15, 57, 25, 48, 74, 40, 25, 18, 21, 3, 6, 7, 7, 14, 9, 11, 16, 14, 14, 14, 28, 18, 22, 21, 26, 39, 24, 22, 18, 22, 19, 19, 45, 15, 13, 22, 31, 29, 46, 37, 23, 35, 68, 39, 51, 35, 50, 80, 69, 51, 41, 90, 43, 32, 48, 34, 53, 25, 66, 39, 83, 70, 237, 81, 126, 95, 170, 35, 94, 8), etndich = c(1, 2, 1, 2, 1, 2, 1, 1, NA, 1, 1, 1, 1, 1, NA, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, NA, 2, 1, NA, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, NA, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, NA, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 1, NA, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, NA, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, NA, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, NA, 1, 2, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, NA, NA, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, NA, 2, 1, 1, 1, 1, NA, 1, 1, 2, 1, 1, 1, 2, 1, NA, 1, 1, 1, 1, 1, 1, 1, NA, NA, 2, 1, 1, 2, 2, NA, 2, NA, 2, 2, 1, NA, 1, NA, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, NA, 1, 1, NA, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2), Leeftijd = c(26, 69, 67, 38, 29, 50, 29, 23, 52, 39, 50, 29, 36, 52, 43, 53, 47, 33, 52, 55, 43, 64, 35, 24, 51, 39, 50, 51, 46, 51, 30, 32, 28, 25, 52, 48, 60, 31, 61, 47, 46, 56, 38, 72, 88, 34, 56, 27, 27, 56, 52, 49, 34, 25, 22, 60, 61, 42, 45, 51, 42, 61, 69, 57, 35, 50, 42, 50, 51, 46, 28, 34, 52, 33, 30, 64, 65, 35, 31, 57, 75, 43, 46, 35, 65, 29, 29, 75, 49, 31, 57, 29, 40, 75, 30, 34, 58, 47, 37, 43, 34, 47, 46, 42, 49, 57, 46, 36, 51, 80, 45, 47, 48, 23, 51, 53, 44, 64, 44, 33, 40, 42, 29, 60, 28, 47, 47, 39, 25, 41, 39, 27, 57, 66, 42, 22, 59, 27, 43, 53, 65, 52, 41, 50, 55, 29, 55, 39, 41, 25, 74, 68, 55, 29, 77, 45, 18, 34, 49, 74, 44, 33, 48, 82, 61, 54, 46, 30, 33, 65, 51, 44, 50, 57, 27, 56, 85, 52, 31, 62, 62, 34, 48, 28, 28, 63, 30, 40, 44, 37, 73, 70, 39, 59, 56, 61, 40, 43, 33, 58, 44, 62, 26, 72, 67, 59, 48, 37, 52, 37, 57, 53, 59, 44, 71, 81, 33, 61, 50, 33, 48, 50, 63, 46, 60, 58, 40, 63, 39, 71, 38, 40, 56, 36, 52, 61, 83, 59, 43, 69, 50, 57, 38, 50, 27, 43, 46, 30, 50, 34, 68, 53, 48, 84, 41, 57, 61, 72, 27, 80, 71, 69, 61, 43, 67, 60, 58, 67, 72, 40, 79, 52, 80, 33, 25, 80, 67, 56, 66, 54, 50, 65, 39, 36, 69, 39, 34, 41, 36, 61, 33, 42, 43, 45, 48, 67, 69, 66, 37, 28, 64, 65, 68, 62, 84, 82, 59, 61, 74, 52, 41, 30, 33, 55, 55, 26, 53, 33, 64, 65, 74, 67, 70, 58, 51, 62, 67, 52, 40, 57, 57, 57, 59, 56, 61, 58, 45, 63, 61, 50, 70, 32, 50, 74, 70, 49, 42, 71, 51, 67, 46, 45, 75, 54, 75, 45, 46, 64, 60, 55, 61, 65, 68, 71, 43, 78, 53, 63, 85, 75, 66, 67, 54, 63, 68, 84, 58, 72, 70, 58, 29, 63, 83, 64, 75, 59, 76, 61, 62, 65, 61, 72, 20, 43, 67, 33, 62, 63, 51, 34, 68, 68, 60, 67, 44, 64, 69, 53, 69, 47, 41, 38, 57, 71, 70, 68, 25, 60, 71, 48, 64, 62, 72, 60, 45, 67, 59, 73, 27, 64, 66, 57, 72, 71, 77, 58, 56, 65, 74, 44, 22, 63, 42, 80, 52, 66, 60, 56, 54, 42, 68, 57, 37)), .Names = c("HbA1c", "BMI", "Comorb", "PAIDhoog", "PHQhoog", "totaalhealthcareutilization", "etndich", "Leeftijd"), row.names = c(NA, -453L), variable.labels = structure(c("HbA1c", "BMI level", "", "", "", "", "", ""), .Names = c("HbA1c", "BMI", "Comorb", "PAIDhoog", "PHQhoog", "totaalhealthcareutilization", "etndich", "Leeftijd")), codepage = 65001L, class = "data.frame")