ValueError:使用Seaborn时,缓冲区的维数错误(预期为1,为2)

时间:2018-07-18 18:23:59

标签: python numpy data-visualization seaborn

我正在尝试使用seaborn绘制计数图。但是,我不断收到错误消息:

class InstagramDemographicsAnalitics(models.Model):
    class Meta:
       #unique_together = (('instagram', 'age_group', 'gender', ),)
        permissions = (
            (
                'view_all_instagram_demographics_analytics', 
                'Can view all_instagram_demographics_analytics'
            ),
            (
                'change_all_instagram_demographics_analytics',
                'Can change all_instagram_demographics_analytics'
            ),
        )
    instagram = models.ForeignKey(Instagram)
    age_group = models.CharField(max_length=50)
    gender = models.CharField(max_length=10, default='female')
    percentage = models.DecimalField(default=0, max_digits=5, decimal_places=3)
    is_full_gender = models.BooleanField(default=False)
    full_percentage = models.DecimalField(default=0, max_digits=5, decimal_places=2)

数据采用如下数组格式:

 ValueError: Buffer has wrong number of dimensions (expected 1, got 2)

最后,我有一个称为cat的数据框。 这是我正在使用的代码

      kmeans_updated_transform 
Output : array([[  69.86249185,  420.73371599,  293.97930338, ...,   75.0959945 ,
            1324.91605382,  695.82952194],
           [ 653.72679905,  173.0166009 ,  881.79444099, ...,  519.62763564,
             737.738956  ,  114.53013382],
           [ 137.60270124,  621.0421363 ,   93.48686268, ...,  271.48007915,
            1525.69688999,  896.4147582 ],
           ...,


pca_original_transform
Output: array([[ 9.43214091e+01, -1.89435531e+01,  1.07357663e+01, ...,
         1.23508040e-02, -4.93779143e-03,  4.85990628e-13],
       [ 6.82436757e+02,  3.43334711e+01,  9.96130809e+00, ...,
         1.91267574e-02,  8.14910013e-03, -1.38680181e-13],
       [-1.06579511e+02, -6.68715037e+00, -1.84056983e+00, ...,
        -1.90794427e-02, -4.22592696e-03, -2.87145744e-13],
       ...,

为什么在尝试绘制计数图时会引发错误。任何帮助,将不胜感激。谢谢

1 个答案:

答案 0 :(得分:0)

如果df是您的数据帧,则通过将该数据帧的列名提供给countplot的参数来产生计数图

ax = sns.countplot(x="columnname1", hue="columnname2", data=cat)