我想使用vlookup
方法向DataFrame =VLOOKUP(A2;sheet2!A2:G712;4)
添加2列(cat_a
,cat_b
)。但是我没有让代码正常工作...
df
这应该是新列.assign()
和import pandas as pd
np.random.seed(999)
num = 10
df = pd.DataFrame({'id': np.random.choice(range(1000, 10000), num, replace=False),
'sex': np.random.choice(list('MF'), num, replace=True),
'year': np.random.randint(1980, 1990, num)})
print(df)
id sex year
0 3461 F 1983
1 8663 M 1988
2 6615 M 1986
3 5336 M 1982
4 3756 F 1984
5 8653 F 1989
6 9362 M 1985
7 3944 M 1981
8 3334 F 1986
9 6135 F 1988
的值
cat_a
尝试使用cat_b
方法的语法:
# cat_a
list(map(lambda y: 'A' if y <= 1985 else 'B', df.year))
['A', 'B', 'B', 'A', 'A', 'B', 'A', 'A', 'B', 'B']
# cat_b
list(map(lambda s, y: 1 if s == 'M' and y <= 1985 else (2 if s == 'M' else (3 if y < 1985 else 4)), df.sex, df.year))
[3, 2, 2, 1, 3, 4, 1, 1, 4, 4]
替换虚拟变量会导致错误:
.assign()
非常欢迎任何有关如何使代码正常工作的建议!
我有解决方法,但我想使用df.assign(cat_a = 'AB', cat_b = 1234)
print(df)
id sex year cat_a cat_b
0 3461 F 1983 AB 1234
1 8663 M 1988 AB 1234
2 6615 M 1986 AB 1234
3 5336 M 1982 AB 1234
4 3756 F 1984 AB 1234
5 8653 F 1989 AB 1234
6 9362 M 1985 AB 1234
7 3944 M 1981 AB 1234
8 3334 F 1986 AB 1234
9 6135 F 1988 AB 1234
方法获得结果。
答案 0 :(得分:3)
对numpy.where
和numpy.select
使用矢量化解决方案:
m1 = df.year <= 1985
m2 = df.sex == 'M'
a = np.where(m1, 'A', 'B')
b = np.select([m1 & m2, ~m1 & m2, m1 & ~m2], [1,2,3], default=4)
df = df.assign(cat_a = a, cat_b = b)
print (df)
id sex year cat_a cat_b
0 3461 F 1983 A 3
1 8663 M 1988 B 2
2 6615 M 1986 B 2
3 5336 M 1982 A 1
4 3756 F 1984 A 3
5 8653 F 1989 B 4
6 9362 M 1985 A 1
7 3944 M 1981 A 1
8 3334 F 1986 B 4
9 6135 F 1988 B 4
验证:
a = list(map(lambda y: 'A' if y <= 1985 else 'B', df.year))
b = list(map(lambda s, y: 1 if s == 'M' and y <= 1985 else (2 if s == 'M' else (3 if y < 1985 else 4)), df.sex, df.year))
df = df.assign(cat_a = a, cat_b = b)
print (df)
id sex year cat_a cat_b
0 3461 F 1983 A 3
1 8663 M 1988 B 2
2 6615 M 1986 B 2
3 5336 M 1982 A 1
4 3756 F 1984 A 3
5 8653 F 1989 B 4
6 9362 M 1985 A 1
7 3944 M 1981 A 1
8 3334 F 1986 B 4
9 6135 F 1988 B 4
性能真的很有趣,在较小的DataFrame中,1k
更快mapping
,对于较大的DataFrame,最好使用numpy
解决方案:
np.random.seed(999)
def mapping(df):
a = list(map(lambda y: 'A' if y <= 1985 else 'B', df.year))
b = list(map(lambda s, y: 1 if s == 'M' and y <= 1985 else (2 if s == 'M' else (3 if y < 1985 else 4)), df.sex, df.year))
return df.assign(cat_a = a, cat_b = b)
def vec(df):
m1 = df.year <= 1985
m2 = df.sex == 'M'
a = np.where(m1, 'A', 'B')
b = np.select([m1 & m2, ~m1 & m2, m1 & ~m2], [1,2,3], default=4)
return df.assign(cat_a = a, cat_b = b)
def make_df(n):
df = pd.DataFrame({'id': np.random.choice(range(10, 1000000), n, replace=False),
'sex': np.random.choice(list('MF'), n, replace=True),
'year': np.random.randint(1980, 1990, n)})
return df
perfplot.show(
setup=make_df,
kernels=[mapping, vec],
n_range=[2**k for k in range(2, 18)],
logx=True,
logy=True,
equality_check=False, # rows may appear in different order
xlabel='len(df)')