在我的场景上,我渲染风景(从高度图上绘制大约 522000 个三角形,高度图的所有点都用于创建三角形网格),并且阴影贴图/模糊处于活动状态。我注意到FPS大幅下降。目前,我有一个光源-一种“太阳”。因此,光源far_plane
极高-512(景观的最大点为128,最小点为0)。我需要以某种方式对其进行优化以获得更好的性能。
far_plane
,是否可以提高性能?我的着色器:
顶点着色器:
#version 130
in vec4 a_Position; // Per-vertex position information we will pass in.
void main() {
gl_Position = a_Position;
}
几何着色器:
#version 330 core
layout (triangles) in;
layout (triangle_strip, max_vertices=3) out;
uniform mat4 u_Model, u_View, u_Projection;
uniform float greenValue = 64;
uniform float greyValue = 96;
out vec3 norm;
out vec4 v_Position;
out mat4 model, view, projection;
out vec4 ambientColor;
out vec4 diffuseColor;
out vec4 specularColor;
void main() {
vec4 v1Eye = u_View * u_Model * gl_in[0].gl_Position;
vec4 v2Eye = u_View * u_Model * gl_in[1].gl_Position;
vec4 v3Eye = u_View * u_Model * gl_in[2].gl_Position;
vec4 v1v2 = v1Eye - v2Eye;
vec4 v2v3 = v2Eye - v3Eye;
vec3 normal = cross(vec3(v1v2), vec3(v2v3));
normal = normalize(normal);
if (normal.z < 0) normal = -normal;
mat4 MVPMatrix = u_Projection * u_View * u_Model;
for (int i = 0; i < gl_in.length(); i++) {
v_Position = gl_in[i].gl_Position;
gl_Position = MVPMatrix * gl_in[i].gl_Position;
model = u_Model;
view = u_View;
projection = u_Projection;
norm = normal;
if (v_Position.y < greenValue) {
ambientColor = vec4(0, 1, 0, 1);
diffuseColor = ambientColor;
specularColor = vec4(0, 0, 0, 1);
} else if (v_Position.y < greyValue) {
ambientColor = vec4(0.4, 0.4, 0.4, 1);
diffuseColor = ambientColor;
specularColor = vec4(0, 0, 0, 1);
} else {
ambientColor = vec4(1, 1, 1, 1);
diffuseColor = ambientColor;
specularColor = ambientColor;
}
EmitVertex();
}
EndPrimitive();
}
片段着色器:
#version 330 core
precision mediump float; // Set the default precision to medium. We don't need as high of a
// precision in the fragment shader.
#define MAX_LAMPS_COUNT 8 // Max lamps count.
uniform vec3 u_ViewPos; // Camera position
uniform int u_LampsCount; // Lamps count
uniform float brightnessThreshold = 0.3; // brightness threshold variable
uniform float far_plane; // shadow matrix far plane
in mat4 model, view, projection;
in vec4 v_Position; // Position for this fragment in world space
in vec4 ambientColor;
in vec4 diffuseColor;
in vec4 specularColor;
in vec3 norm;
struct Lamp {
float ambientStrength;
float diffuseStrength;
float specularStrength;
float kc; // constant term
float kl; // linear term
float kq; // quadratic term
int shininess;
vec3 lampPos; // in world space
vec3 lampColor;
};
uniform samplerCube shadowMaps[MAX_LAMPS_COUNT];
uniform Lamp u_Lamps[MAX_LAMPS_COUNT];
vec3 fragPos;
vec3 fragWorldPos;
vec3 lampEyePos; // Transformed lamp position into eye space
float shadow;
// for PCF
vec3 sampleOffsetDirections[20] = vec3[] (
vec3(1, 1, 1), vec3(1, -1, 1), vec3(-1, -1, 1), vec3(-1, 1, 1),
vec3(1, 1, -1), vec3(1, -1, -1), vec3(-1, -1, -1), vec3(-1, 1, -1),
vec3(1, 1, 0), vec3(1, -1, 0), vec3(-1, -1, 0), vec3(-1, 1, 0),
vec3(1, 0, 1), vec3(-1, 0, 1), vec3(1, 0, -1), vec3(-1, 0, -1),
vec3(0, 1, 1), vec3(0, -1, 1), vec3(0, -1, -1), vec3(0, 1, -1)
);
// output colors
layout(location = 0) out vec4 fragColor;
layout(location = 1) out vec4 fragBrightColor;
float calculateShadow(vec3 lightDir, int index) {
// get vector between fragment position and light position
vec3 fragToLight = fragWorldPos - u_Lamps[index].lampPos;
// now get current linear depth as the length between the fragment and light position
float currentDepth = length(fragToLight);
// now test for shadows
//float bias = max(0.5 * (1.0 - dot(norm, lightDir)), 0.005);
float bias = 1;
// PCF
float viewDistance = length(u_ViewPos - fragWorldPos);
float diskRadius = (1.0 + (viewDistance / far_plane)) / 25.0;
for (int i = 0; i < 20; ++i) {
float closestDepth = texture(shadowMaps[index], fragToLight + sampleOffsetDirections[i] * diskRadius).r;
closestDepth *= far_plane; // Undo mapping [0;1]
if(currentDepth - bias > closestDepth) shadow += 1.0;
}
shadow /= 20;
//fragColor = vec4(vec3(closestDepth / far_plane), 1.0); // visualizing
return shadow;
}
float calculateAttenuation(Lamp lamp) {
float distance = length(lampEyePos - fragPos);
return 1.0 / (
lamp.kc +
lamp.kl * distance +
lamp.kq * (distance * distance)
);
}
vec4 toVec4(vec3 v) {
return vec4(v, 1);
}
// The entry point for our fragment shader.
void main() {
fragWorldPos = vec3(model * v_Position);
// Transform the vertex into eye space
mat4 mvMatrix = view * model;
fragPos = vec3(mvMatrix * v_Position);
vec3 viewDir = normalize(u_ViewPos - fragPos);
vec3 ambientResult = vec3(0, 0, 0); // result of ambient lighting for all lamps
vec3 diffuseResult = vec3(0, 0, 0); // result of diffuse lighting for all lamps
vec3 specularResult = vec3(0, 0, 0); // result of specular lighting for all lamps
for (int i = 0; i<u_LampsCount; i++) {
lampEyePos = vec3(view * toVec4(u_Lamps[i].lampPos));
// attenuation
float attenuation = calculateAttenuation(u_Lamps[i]);
// ambient
vec3 ambient = u_Lamps[i].ambientStrength * u_Lamps[i].lampColor * attenuation;
// diffuse
vec3 lightDir = normalize(lampEyePos - fragPos);
float diff = max(dot(norm, lightDir), 0.0);
vec3 diffuse = u_Lamps[i].diffuseStrength * diff * u_Lamps[i].lampColor * attenuation;
// specular
vec3 reflectDir = reflect(-lightDir, norm);
float spec = pow(max(dot(viewDir, reflectDir), 0.0), u_Lamps[i].shininess);
vec3 specular = u_Lamps[i].specularStrength * spec * u_Lamps[i].lampColor * attenuation;
// calculate shadow
shadow = calculateShadow(lightDir, i);
// result for this(i) lamp
ambientResult += ambient;
diffuseResult += diffuse * (1-shadow);
specularResult += specular * (1-shadow);
}
fragColor =
toVec4(ambientResult) * ambientColor +
toVec4(diffuseResult) * diffuseColor +
toVec4(specularResult) * specularColor;
// brightness calculation
float brightness = dot(fragColor.rgb, vec3(0.2126, 0.7152, 0.0722));
if (brightness > brightnessThreshold) fragBrightColor = vec4(fragColor.rgb, 1.0);
}
和我的阴影着色器:
顶点着色器:
#version 130
attribute vec3 a_Position;
uniform mat4 u_ModelMatrix;
void main() {
gl_Position = u_ModelMatrix * vec4(a_Position, 1.0);
}
几何着色器:
#version 330 core
layout (triangles) in;
layout (triangle_strip, max_vertices=18) out;
uniform mat4 shadowMatrices[6];
out vec4 fragPos; // FragPos from GS (output per emitvertex)
void main() {
for(int face = 0; face < 6; face++) {
gl_Layer = face; // built-in variable that specifies to which face we render.
// for each triangle's vertices
for(int i = 0; i < 3; i++) {
fragPos = gl_in[i].gl_Position;
gl_Position = shadowMatrices[face] * fragPos;
EmitVertex();
}
EndPrimitive();
}
}
片段着色器:
#version 330 core
in vec4 fragPos; // world space
uniform vec3 lightPos; // world space
uniform float far_plane; // shadow matrix far plane
void main()
{
float lightDistance = length(fragPos.xyz - lightPos);
// map to [0;1] range by dividing by far_plane
lightDistance = lightDistance / far_plane;
// write this as modified depth
gl_FragDepth = lightDistance;
}
希望您能帮助您优化此场景。