我正在尝试使用ZGEEV计算特征值和特征向量,但是在以不同的优化级别使用时,输出不正确且不一致也有些麻烦。以下是我的Fortran代码,结果为-O1和-O2优化级别。我还提供了Python代码进行比较。
我只能以某种方式错误地呼叫zgeev()
,但是我无法确定如何。我相信我的LAPACK安装不太可能出现问题,因为我已经比较了Windows和Linux两台不同计算机上的输出。
Fortran代码:
program example_main
use example_subroutine
implicit none
complex(kind = 8) :: eigval(2), dummy(2, 2), work(4), eig_vector(2, 2)
real(kind = 8) :: Rwork
complex(kind = 8), dimension(2, 2) :: hamiltonian
integer :: info, count
call calculate_hamiltonian(hamiltonian)
call ZGEEV('N', 'V', 2, hamiltonian, 2, eigval, dummy, 4, eig_vector, 2, work, 4, Rwork, info)
end program example_main
module example_subroutine
contains
subroutine calculate_hamiltonian(hamiltonian)
implicit none
integer :: count
complex(kind = 8), dimension(2, 2), intent(out) :: hamiltonian
complex(kind = 8), dimension(2, 2) :: spin_x, spin_z
spin_x = 0.5 * (reshape((/ 0.D0, 1.D0, 1.D0, 0.D0/), shape(spin_x), order = (/2, 1/)))
spin_z = 0.5 * (reshape((/ 1.D0, 0.D0, 0.D0, -1.D0/), shape(spin_z), order = (/2, 1/)))
hamiltonian = 2D6 * spin_z + 1D6 * spin_x + 1E6 * matmul(spin_x, spin_z)
end subroutine calculate_hamiltonian
end module
-O1处的结果:
eigval
(1089724.7358851689,0.0000000000000000) (-1089724.7358851684,0.0000000000000000)
eig_vector
(1.0000000000000000,0.0000000000000000) (0.0000000000000000,-0.0000000000000000) (1.0000000000000000,0.0000000000000000) (0.0000000000000000,0.0000000000000000)
结果为-O2:
eigval
(1089724.7358851689,1.20522527882675885E-014) (0.99999999999998823,0.0000000000000000)
eig_vector
(2.55688391396797063E-006,-0.0000000000000000) (0.99999999999673128,0.0000000000000000) (-1.09782752690336509E-007,0.0000000000000000) (0.99999999999999412,0.0000000000000000)
Python代码:
spin_x = 1/2 * np.array([[0, 1], [1, 0]])
spin_z = 1/2 * np.array([[1, 0], [0, -1]])
hamiltonian = 2E6 * spin_z + 1E6 * spin_x + 1E6 * np.matmul(spin_x, spin_z)
eigvals, eigvectors = np.linalg.eig(hamiltonian)
Python结果:
eigvals [ 1089724.73588517 -1089724.73588517]
eigvectors [[ 0.94121724 -0.11878597] [ 0.33780187 0.99291988]]
编辑:
使用文档中指定的complex * 16和double precision,显式write()并将所有内容初始化为零以确保安全:
module example_subroutine
contains
subroutine calculate_hamiltonian(hamiltonian)
implicit none
complex*16, dimension(2, 2), intent(out) :: hamiltonian
complex*16, dimension(2, 2) :: spin_x, spin_z
hamiltonian = 0
spin_x = 0
spin_z = 0
spin_x = 0.5 * (reshape((/ 0.D0, 1.D0, 1.D0, 0.D0/), shape(spin_x), order = (/2, 1/)))
spin_z = 0.5 * (reshape((/ 1.D0, 0.D0, 0.D0, -1.D0/), shape(spin_z), order = (/2, 1/)))
hamiltonian = 2D6 * spin_z + 1D6 * spin_x + 1E6 * matmul(spin_x, spin_z)
write(6, *) 'hamiltonian', hamiltonian
end subroutine calculate_hamiltonian
end module
program example_main
use example_subroutine
implicit none
complex*16 :: eigval(2), dummy(2, 2), work(4), eig_vector(2, 2)
double precision :: Rwork
complex*16, dimension(2, 2) :: hamiltonian
integer :: info
eigval = 0
dummy = 0
work = 0
eig_vector = 0
Rwork = 0
info = 0
hamiltonian = 0
call calculate_hamiltonian(hamiltonian)
write(6, *) 'hamiltonian before', hamiltonian
call ZGEEV('N', 'V', 2, hamiltonian, 2, eigval, dummy, 4, eig_vector, 2, work, 4, Rwork, info)
write(6, *) 'hamiltonian after', hamiltonian
write(6, *) 'eigval', eigval
write(6, *) 'eig_vector', eig_vector
write(6, *) 'info', info
write(6, *) 'work', work
end program example_main
输出-O1:
hamiltonian
(1000000.0000000000,0.0000000000000000) (750000.00000000000,0.0000000000000000) (250000.00000000000,0.0000000000000000) (-1000000.0000000000,0.0000000000000000)
hamiltonian before
(1000000.0000000000,0.0000000000000000) (750000.00000000000,0.0000000000000000) (250000.00000000000,0.0000000000000000) (-1000000.0000000000,0.0000000000000000)
hamiltonian after
(0.99999999999999989,0.0000000000000000) (0.0000000000000000,0.0000000000000000) (500000.00000000012,0.0000000000000000) (-1089724.7358851684,0.0000000000000000)
eigval
(1089724.7358851689,0.0000000000000000) (-1089724.7358851684,0.0000000000000000)
eig_vector
(1.0000000000000000,0.0000000000000000) (0.0000000000000000,-0.0000000000000000) (1.0000000000000000,0.0000000000000000) (0.0000000000000000,0.0000000000000000)
info 0
work
(260.00000000000000,0.0000000000000000) (-1089724.7358851684,0.0000000000000000) (1.0000000000000000,0.0000000000000000) (1.0000000000000000,0.0000000000000000)
输出-O2:
hamiltonian
(1000000.0000000000,0.0000000000000000) (750000.00000000000,0.0000000000000000) (250000.00000000000,0.0000000000000000) (-1000000.0000000000,0.0000000000000000)
hamiltonian before
(1000000.0000000000,0.0000000000000000) (750000.00000000000,0.0000000000000000) (250000.00000000000,0.0000000000000000) (-1000000.0000000000,0.0000000000000000)
hamiltonian after
(1089724.7358851689,0.0000000000000000) (0.0000000000000000,0.0000000000000000) (500000.00000000012,0.0000000000000000) (-1089724.7358851684,0.0000000000000000)
eigval
(1089724.7358851689,1.20522527882675885E-014) (0.99999999999998823,0.0000000000000000)
eig_vector
(2.55688391396797063E-006,-0.0000000000000000) (0.99999999999673128,0.0000000000000000) (-1.09782752690336509E-007,0.0000000000000000) (0.99999999999999412,0.0000000000000000)
info 0
work
(260.00000000000000,0.0000000000000000) (-1089724.7358851684,0.0000000000000000) (1.0000000000000000,0.0000000000000000) (1.0000000000000000,0.0000000000000000)
Python:
spin_x = 1/2 * np.array([[0, 1], [1, 0]])
spin_z = 1/2 * np.array([[1, 0], [0, -1]])
hamiltonian = 2E6 * spin_z + 1E6 * spin_x + 1E6 * np.matmul(spin_x, spin_z)
print('hamiltonian', hamiltonian)
eigvals, eigvectors = np.linalg.eig(hamiltonian)
print('hamiltonian', hamiltonian)
print('eigvals', eigvals)
print('eigvectors', eigvectors)
结果:
hamiltonian [[ 1000000. 250000.] [ 750000. -1000000.]]
hamiltonian [[ 1000000. 250000.] [ 750000. -1000000.]]
eigvals [ 1089724.73588517 -1089724.73588517]
eigvectors [[ 0.94121724 -0.11878597] [ 0.33780187 0.99291988]]
答案 0 :(得分:3)
在程序中,您将rwork作为一个标量,根据位于以下位置的文档,它应该是大小为2 * N的数组。
更正此问题即可解决
答案 1 :(得分:2)
根据var whosTurn = true;
function turn(id) {
var element = document.getElementById(id);
if (whosTurn) {
element.innerHTML = "X";
} else {
element.innerHTML = "O";
}
element.disabled = true;
whosTurn = !whosTurn;
}
的文档(在http://www.netlib.org/lapack/explore-html/db/d55/group__complex16_g_eeigen_ga0eb4e3d75621a1ce1685064db1ac58f0.html#ga0eb4e3d75621a1ce1685064db1ac58f0上):
zgeev
您提供的数组类型为subroutine zgeev ( character JOBVL,
character JOBVR,
integer N,
complex*16, dimension( lda, * ) A,
integer LDA,
complex*16, dimension( * ) W,
complex*16, dimension( ldvl, * ) VL,
integer LDVL,
complex*16, dimension( ldvr, * ) VR,
integer LDVR,
complex*16, dimension( * ) WORK,
integer LWORK,
double precision, dimension( * ) RWORK,
integer INFO
)
而不是类型complex(kind = 8)
,并且为complex*16
提供的数组类型为RWord
而不是real(kind = 8)
。
(根据编译器的不同,double precision
的含义可能会有所不同)