修补linalg库,我尝试使用LAPACKE获得使用c ++运行的Hermitian矩阵的对角化例程
我按照this示例使用ZHEEV,然后检查其他一些方法,特别是numpy的eig和LAPACK(E)的zgeev。我不想使用英特尔自有品牌的东西,所以我避免使用MKL而只是直接使用LAPACKE,但大多数代码与示例中的相同。
为清楚起见,我认为 ge neral z ge ev不应该能够处理他 rmitian矩阵,即使z 他 ev被优化。
这是c ++
#include <stdlib.h>
#include <stdio.h>
#include <lapacke.h>
//Parameters
#define N 4
#define LDA N
#define lint lapack_int
#define ldcmplex lapack_complex_double
//Auxiliary routines prototypes
extern void print_matrix( char* desc, lint m, lint n, ldcmplex* a, lint lda );
extern void print_rmatrix( char* desc, lint m, lint n, double* a, lint lda );
//Main program
int main()
{
//Locals
lint n = N, lda = LDA, info;
;
//Local arrays
double wr[N];
ldcmplex ah[LDA*N] = {
{ 9.14, 0.00}, { 0.00, 0.00}, { 0.00, 0.00}, { 0.00, 0.00},
{-4.37, 9.22}, {-3.35, 0.00}, { 0.00, 0.00}, { 0.00, 0.00},
{-1.98, 1.72}, { 2.25, 9.51}, {-4.82, 0.00}, { 0.00, 0.00},
{-8.96, 9.50}, { 2.57, -2.40}, {-3.24, -2.04}, { 8.44, 0.00}
};
;
//Executable statements
printf( "LAPACKE_zheev (row-major, high-level) Example Program Results\n" ) ;
;
//Print martix
print_matrix( "Input Matrix", n, n, ah, lda );
;
//Solve eigenproblem
info = LAPACKE_zheev( LAPACK_ROW_MAJOR, 'V', 'L', n, ah, lda, wr );
;
//Check for convergence
if( info > 0 ) {
printf( "zheev algorithm failed to compute eigenvalues.\n" );
exit( 1 );
}
;
//Print eigenvalues
print_rmatrix( "zheev Eigenvalues", 1, n, wr, 1 );
;
//Print eigenvectors
print_matrix( "Eigenvectors (stored columnwise)", n, n, ah, lda );
;
//Local arrays
ldcmplex wc[N];
ldcmplex ag[LDA*N] = {
{ 9.14, 0.00}, {-4.37, -9.22}, {-1.98, -1.72}, {-8.96, -9.50},
{-4.37, 9.22}, {-3.35, 0.00}, { 2.25, -9.51}, { 2.57, 2.40},
{-1.98, 1.72}, { 2.25, 9.51}, {-4.82, 0.00}, {-3.24, 2.04},
{-8.96, 9.50}, { 2.57, -2.40}, {-3.24, -2.04}, { 8.44, 0.00},
};
;
//Executable statements
printf( "LAPACKE_zgeev (row-major, high-level) Example Program Results\n" );
;
//Print martix
print_matrix( "Input Matrix", n, n, ag, lda );
;
//Solve eigenproblem
info = LAPACKE_zgeev( LAPACK_ROW_MAJOR, 'N', 'V', n, ag, lda, wc, 0, lda, 0, lda);
;
//Check for convergence
if( info > 0 ) {
printf( "zgeev algorithm failed to compute eigenvalues.\n" );
exit( 1 );
}
;
//Print eigenvalues
print_matrix( "zgeev Eigenvalues", 1, n, wc, 1);
;
//Print eigenvectors
print_matrix( "Eigenvectors (stored columnwise)", n, n, ag, lda );
exit( 0 );
}
//Auxiliary routine: printing a matrix
void print_matrix( char* desc, lint m, lint n, ldcmplex* a, lint lda ) {
lint i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ )
printf( " (%6.2f,%6.2f)", creal(a[i*lda+j]), cimag(a[i*lda+j]) );
printf( "\n" );
}
}
//Auxiliary routine: printing a real matrix
void print_rmatrix( char* desc, lint m, lint n, double* a, lint lda ) {
lint i, j;
printf( "\n %s\n", desc );
for( i = 0; i < m; i++ ) {
for( j = 0; j < n; j++ ) printf( " %6.2f", a[i*lda+j] );
printf( "\n" );
}
}
用
编译g++ diag.cc -L /usr/lib/lapack/ -llapacke -lcblas -o diag.out
唯一通过liblapacke-dev
安装的非标准软件包libcblas-dev
和apt-get install
。什么可能出错?
输出
LAPACKE_zheev (row-major, high-level) Example Program Results
Input Matrix
( 9.14, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
( -4.37, 9.22) ( -3.35, 0.00) ( 0.00, 0.00) ( 0.00, 0.00)
( -1.98, 1.72) ( 2.25, 9.51) ( -4.82, 0.00) ( 0.00, 0.00)
( -8.96, 9.50) ( 2.57, -2.40) ( -3.24, -2.04) ( 8.44, 0.00)
zheev Eigenvalues
-18.96 -12.85 18.78 30.71
Eigenvectors (stored columnwise)
( 0.16, 0.00) ( 0.57, 0.00) ( -0.73, 0.00) ( 0.35, 0.00)
( 0.26, -0.81) ( 0.17, -0.25) ( 0.22, -0.38) ( 0.06, -0.02)
( 0.29, 0.27) ( -0.11, -0.30) ( -0.26, -0.42) ( -0.50, -0.50)
( -0.21, 0.23) ( 0.50, -0.49) ( 0.18, -0.09) ( -0.33, 0.51)
LAPACKE_zgeev (row-major, high-level) Example Program Results
Input Matrix
( 9.14, 0.00) ( -4.37, -9.22) ( -1.98, -1.72) ( -8.96, -9.50)
( -4.37, 9.22) ( -3.35, 0.00) ( 2.25, -9.51) ( 2.57, 2.40)
( -1.98, 1.72) ( 2.25, 9.51) ( -4.82, 0.00) ( -3.24, 2.04)
( -8.96, 9.50) ( 2.57, -2.40) ( -3.24, -2.04) ( 8.44, 0.00)
zgeev Eigenvalues
( 25.51, 0.00) (-16.00, -0.00) ( -6.76, 0.00) ( 6.67, 0.00)
Eigenvectors (stored columnwise)
( 25.51, 0.00) ( -0.00, 0.00) ( 0.00, 0.00) ( 0.00, -0.00)
( 0.00, 0.00) (-16.00, -0.00) ( 0.00, -0.00) ( 0.00, -0.00)
( 0.00, 0.00) ( 0.00, 0.00) ( -6.76, 0.00) ( -0.00, -0.00)
( 0.00, 0.00) ( 0.00, 0.00) ( 0.00, 0.00) ( 6.67, 0.00)
我尝试使用上三角形,填充矩阵和其他各种修正。每次都有相同的结果。
我怀疑#define ldcmplex lapack_complex_double
宏,但我能找到的所有documentation都说我应该使用双重复合体,所以我有点迷失了。无论如何,如果那是问题,为什么zgeev会工作?
无论如何,这是python检查脚本:
#!/usr/bin/env python
from numpy import linalg as li
import numpy as np
mat=np.array([
[ 9.14 + 0.00j, 0.00 + 0.00j, 0.00 + 0.00j, 0.00 +0.00j],
[ -4.37 + 9.22j, -3.35 + 0.00j, 0.00 + 0.00j, 0.00 +0.00j],
[ -1.98 + 1.72j, 2.25 + 9.51j, -4.82 + 0.00j, 0.00 +0.00j],
[ -8.96 + 9.50j, 2.57 - 2.40j, -3.24 - 2.04j, 8.44 +0.00j]])
mat[0]=np.conj(mat[:,0])
mat[1]=np.conj(mat[:,1])
mat[2]=np.conj(mat[:,2])
mat[3]=np.conj(mat[:,3])
mat=np.matrix(mat)
w, v = li.eig(mat)
print w
print v
它同意zgeev(最多一些舍入/机器错误)。上面链接的intel教程也证实了结果。 zheev方法显然属于少数,我只是不知道为什么。
我在几台机器上试过这个:
Linux parabox 4.8.0-52-generic #55-Ubuntu SMP Fri Apr 28 13:28:50 UTC 2017 x86_64 x86_64 x86_64 GNU/Linux
Linux glass 4.10.0-21-generic #23-Ubuntu SMP Fri Apr 28 16:14:22 UTC 2017 x86_64 x86_64 x86_64 GNU/Linux
任何和所有帮助表示赞赏。
答案 0 :(得分:0)
这是我运行你的python脚本时得到的结果:
$ ./diag.py
[ 25.51400517 +1.20330583e-15j -16.00474647 -2.91871119e-15j
-6.76497015 -6.59630730e-16j 6.66571145 +1.54590036e-16j]
[[ 0.69747489+0.j 0.21857873+0.26662122j 0.47736933+0.26449375j -0.02829581-0.30988089j]
[-0.21578745+0.28003172j 0.69688890+0.j -0.14143627-0.2852389j 0.24437193-0.47778739j]
[-0.14607303-0.08302697j -0.01445974-0.60818924j 0.44678181+0.26546077j 0.57583205+0.j ]
[-0.34133591+0.49376693j 0.15930699-0.00061647j 0.57507627+0.j -0.45823952+0.2713093j ]]
我不知道应该匹配什么。特征值匹配,但不匹配特征向量。
答案 1 :(得分:0)
在编译行中用-cblas
替换-blas
解决了这个问题。
cblas包必须有错误。