我为使用read_table()
将数据加载到Pandas数据框而感到困惑。错误显示TypeError: Cannot cast array from dtype('float64') to dtype('int32') according to the rule 'safe'
和ValueError: cannot safely convert passed user dtype of int32 for float64 dtyped data in column 2
test.py:
import numpy as np
import os
import pandas as pd
# put test.csv in same folder as script
mydir = os.path.dirname(os.path.abspath(__file__))
csv_path = os.path.join(mydir, "test.csv")
df = pd.read_table(csv_path, sep=' ',
comment='#',
header=None,
skip_blank_lines=True,
names=["A", "B", "C", "D", "E", "F", "G"],
dtype={"A": np.int32,
"B": np.int32,
"C": np.float64,
"D": np.float64,
"E": np.float64,
"F": np.float64,
"G": np.int32})
test.csv:
2270433 3 21322.889 11924.667 5228.753 1.0 -1
2270432 3 21322.297 11924.667 5228.605 1.0 2270433
答案 0 :(得分:0)
问题是我使用空格作为定界符,而csv具有尾随空格。删除尾随空格可以解决此问题。
要修剪目录中每个文件的每一行上的所有尾随空格,我运行了以下命令:find . -name "*.csv" | xargs sed -i 's/[ \t]*$//'