如何对以下循环进行矢量化处理?
def my_fnc():
m = np.arange(27.).reshape((3,3,3))
ret = np.empty_like(m)
it = np.nditer(m, flags=['multi_index'])
for x in it:
i,j,k = it.multi_index
ret[i,j,k] = x / m[i,j,i]
return ret
基本上,我是将m中的每个值除以与对角线类似的东西。并非m中的所有值都会有所不同,范围只是一个例子。
谢谢!〜
PS::这是上面函数的输出,不要介意nans:)
array([[[ nan, inf, inf],
[ 1. , 1.33333333, 1.66666667],
[ 1. , 1.16666667, 1.33333333]],
[[ 0.9 , 1. , 1.1 ],
[ 0.92307692, 1. , 1.07692308],
[ 0.9375 , 1. , 1.0625 ]],
[[ 0.9 , 0.95 , 1. ],
[ 0.91304348, 0.95652174, 1. ],
[ 0.92307692, 0.96153846, 1. ]]])
答案 0 :(得分:2)
使用advanced-indexing
一次性获得select
moves.MoveItemCode,
prd.PrdDescr,
moves.MoveDate,
SUM(MoveRealQty) as 'Purchased_Quantity'
from Moves
left join product on (moves.MoveItemCode=product.PrdCode)
where (moves.MoveDate>'2018-06-01' and moves.MoveCase=2)
group by moves.MoveItemCode,product.PrdDescr,moves.MoveDate
order by moves.MoveItemCode asc,moves.MoveDate asc
等价物,然后简单地将输入数组除以它-
m[i,j,i]