我已将网站刮去进行研究,但找不到将其提取到数据框中的正确方法。我相信我的问题与第36和38行之间的列表对象有关。
打印行效果非常好,我可以在Python控制台中看到数据框的最终版本。
解决方案可能非常简单,但我无法弄清楚。预先感谢您的所有帮助。
from time import sleep
from bs4 import BeautifulSoup, SoupStrainer
import requests
import pandas as pd
# Insert the hisghest page number for website
highest_number = 12
def total_page_number(url):
all_webpage_links = []
all_webpage_links.insert(0, url)
pages = [str(each_number) for each_number in range(2, highest_number)]
for page in pages:
link = ''.join(url + '&page=' + page)
all_webpage_links.append(link)
return all_webpage_links
# Use total_page_number function to create page list for website
All_page = total_page_number(
'https://www.imdb.com/search/title?countries=tr&languages=tr&locations=Turkey&count=250&view=simple')
def clean_text(text):
""" Removes white-spaces before, after, and between characters
:param text: the string to remove clean
:return: a "cleaned" string with no more than one white space between
characters
"""
return ' '.join(text.split())
# Create list objects for data
# Problem occurs in this line !!!!!!
actor_names = []
titles = []
dates = []
def get_cast_from_link(movie_link):
""" Go to the IMDb Movie page in link, and find the cast overview list.
Prints tab-separated movie_title, actor_name, and character_played to
stdout as a result. Nothing returned
:param movie_link: string of the link to IMDb movie page (http://imdb.com
...)
:return: void
"""
movie_page = requests.get(movie_link)
# Use SoupStrainer to strain the cast_list table from the movie_page
# This can save some time in bigger scraping projects
cast_strainer = SoupStrainer('table', class_='cast_list')
movie_soup = BeautifulSoup(movie_page.content, 'html.parser', parse_only=cast_strainer)
# Iterate through rows and extract the name and character
# Remember that some rows might not be a row of interest (e.g., a blank
# row for spacing the layout). Therefore, we need to use a try-except
# block to make sure we capture only the rows we want, without python
# complaining.
for row in movie_soup.find_all('tr'):
try:
actor = clean_text(row.find(itemprop='name').text)
actor_names.append(actor)
titles.append(movie_title)
dates.append(movie_date)
print('\t'.join([movie_title, actor, movie_date]))
except AttributeError:
pass
# Export data frame
# Problem occurs in this line !!!!!!
tsd_df = pd.DataFrame({'Actor_Names': actor_names,
'Movie_Title': titles,
'Movie_Date': dates})
tsd_df.to_csv('/Users/ea/Desktop/movie_df.tsv', encoding='utf-8')
for each in All_page:
# Use requests.get('url') to load the page you want
web_page = requests.get(each)
# https://www.imdb.com/search/title?countries=tr&languages=tr&count=250&view=simple&page=2
# Prepare the SoupStrainer to strain just the tbody containing the list of movies
list_strainer = SoupStrainer('div', class_='lister-list')
# Parse the html content of the web page with BeautifulSoup
soup = BeautifulSoup(web_page.content, 'html.parser', parse_only=list_strainer)
# Generate a list of the "Rank & Title" column of each row and iterate
movie_list = soup.find_all('span', class_='lister-item-header')
for movie in movie_list:
movie_title = movie.a.text
movie_date = movie.find('span', class_='lister-item-year text-muted unbold').text
# get the link to the movie's own IMDb page, and jump over
link = 'http://imdb.com' + movie.a.get('href')
get_cast_from_link(link)
# remember to be nice, and sleep a while between requests!
sleep(15)