当前,我正在使用Trigram来执行此操作。 它指定给定句子的出现概率。 但是它仅限于2个单词的唯一上下文。 但是LSTM可以做得更多。 那么如何建立一个LSTM模型来分配给定句子的出现概率呢?
答案 0 :(得分:11)
我刚刚编写了一个非常简单的示例,该示例显示了如何使用LSTM模型来计算句子出现的概率。完整的代码可以在中找到。
假设我们要为以下数据集预测句子出现的可能性(此押韵发表于1765年左右在伦敦的鹅妈妈的旋律中):
# Data
data = ["Two little dicky birds",
"Sat on a wall,",
"One called Peter,",
"One called Paul.",
"Fly away, Peter,",
"Fly away, Paul!",
"Come back, Peter,",
"Come back, Paul."]
首先,让我们使用here创建词汇表并标记句子:
# Preprocess data
tokenizer = Tokenizer()
tokenizer.fit_on_texts(data)
vocab = tokenizer.word_index
seqs = tokenizer.texts_to_sequences(data)
我们的模型将把单词序列作为输入(上下文),并在给定上下文的情况下输出词汇表中每个单词的条件概率分布。为此,我们通过填充序列并在其上滑动窗口来准备训练数据:
def prepare_sentence(seq, maxlen):
# Pads seq and slides windows
x = []
y = []
for i, w in enumerate(seq):
x_padded = pad_sequences([seq[:i]],
maxlen=maxlen - 1,
padding='pre')[0] # Pads before each sequence
x.append(x_padded)
y.append(w)
return x, y
# Pad sequences and slide windows
maxlen = max([len(seq) for seq in seqs])
x = []
y = []
for seq in seqs:
x_windows, y_windows = prepare_sentence(seq, maxlen)
x += x_windows
y += y_windows
x = np.array(x)
y = np.array(y) - 1 # The word <PAD> does not constitute a class
y = np.eye(len(vocab))[y] # One hot encoding
我决定为每节经文分别滑动窗口,但这可以以不同的方式完成。
接下来,我们使用Keras定义和训练一个简单的LSTM模型。该模型由一个嵌入层,一个LSTM层和一个具有softmax激活的密集层组成(使用LSTM的最后一个时间步的输出在给定上下文的情况下产生词汇中每个单词的概率):
# Define model
model = Sequential()
model.add(Embedding(input_dim=len(vocab) + 1, # vocabulary size. Adding an
# extra element for <PAD> word
output_dim=5, # size of embeddings
input_length=maxlen - 1)) # length of the padded sequences
model.add(LSTM(10))
model.add(Dense(len(vocab), activation='softmax'))
model.compile('rmsprop', 'categorical_crossentropy')
# Train network
model.fit(x, y, epochs=1000)
可以使用条件概率规则来计算句子P(w_1, ..., w_n)
出现的联合概率w_1 ... w_n
:
P(w_1, ..., w_n)=P(w_1)*P(w_2|w_1)*...*P(w_n|w_{n-1}, ..., w_1)
其中,每个条件概率均由LSTM模型给出。请注意,它们可能很小,因此明智的做法是在日志空间中进行操作以避免数值不稳定问题。全部放在一起:
# Compute probability of occurence of a sentence
sentence = "One called Peter,"
tok = tokenizer.texts_to_sequences([sentence])[0]
x_test, y_test = prepare_sentence(tok, maxlen)
x_test = np.array(x_test)
y_test = np.array(y_test) - 1 # The word <PAD> does not constitute a class
p_pred = model.predict(x_test) # array of conditional probabilities
vocab_inv = {v: k for k, v in vocab.items()}
# Compute product
# Efficient version: np.exp(np.sum(np.log(np.diag(p_pred[:, y_test]))))
log_p_sentence = 0
for i, prob in enumerate(p_pred):
word = vocab_inv[y_test[i]+1] # Index 0 from vocab is reserved to <PAD>
history = ' '.join([vocab_inv[w] for w in x_test[i, :] if w != 0])
prob_word = prob[y_test[i]]
log_p_sentence += np.log(prob_word)
print('P(w={}|h={})={}'.format(word, history, prob_word))
print('Prob. sentence: {}'.format(np.exp(log_p_sentence)))
注意:这是一个很小的玩具数据集,我们可能过度拟合了。