我正在使用LSTM model in Tensorflow 我已经训练并保存了LSTM模型。现在我要完成生成句子的最后一项任务。 这是我的伪代码:
# We have already the run_epoch(session, m, data, eval_op, verbose=False) function with fee_dict like this:
feed_dict = {m.input_data: x,
m.targets: y,
m.initial_state: state}
...
# train and save model
...
# load saved model for generating task
new_sentence = [START_TOKEN]
# Here I want to generate a sentence until END_TOKEN is generated.
while new_sentence[-1] != END_TOKEN:
logits = get_logits(model, new_sentence)
# get argmax(logits) or sample(logits)
next_word = argmax(logits)
new_sentence.append(next_word)
print(new_sentence)
我的问题是:
在培训,验证或测试模型时,我必须通过 feed_dict 将输入及其标签(通过移位输入一个)提供给模型字典。但是在生成任务中,我只有一个输入,即生成句子 new_sentence 。
如何构建正确的 get_logits 函数或完整的生成函数?
答案 0 :(得分:3)
当您训练时,您有神经网络的输出,根据该输出计算错误,根据您创建优化器的错误来最小化错误。
为了生成一个新句子,你需要得到神经网络(rnn)的输出。
编辑:
"""
Placeholders
"""
x = tf.placeholder(tf.int32, [batch_size, num_steps], name='input_placeholder')
y = tf.placeholder(tf.int32, [batch_size, num_steps], name='labels_placeholder')
init_state = tf.zeros([batch_size, state_size])
"""
RNN Inputs
"""
# Turn our x placeholder into a list of one-hot tensors:
# rnn_inputs is a list of num_steps tensors with shape [batch_size, num_classes]
x_one_hot = tf.one_hot(x, num_classes)
rnn_inputs = tf.unpack(x_one_hot, axis=1)
"""
Definition of rnn_cell
This is very similar to the __call__ method on Tensorflow's BasicRNNCell. See:
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/rnn_cell.py
"""
with tf.variable_scope('rnn_cell'):
W = tf.get_variable('W', [num_classes + state_size, state_size])
b = tf.get_variable('b', [state_size], initializer=tf.constant_initializer(0.0))
def rnn_cell(rnn_input, state):
with tf.variable_scope('rnn_cell', reuse=True):
W = tf.get_variable('W', [num_classes + state_size, state_size])
b = tf.get_variable('b', [state_size], initializer=tf.constant_initializer(0.0))
return tf.tanh(tf.matmul(tf.concat(1, [rnn_input, state]), W) + b)
state = init_state
rnn_outputs = []
for rnn_input in rnn_inputs:
state = rnn_cell(rnn_input, state)
rnn_outputs.append(state)
final_state = rnn_outputs[-1]
#logits and predictions
with tf.variable_scope('softmax'):
W = tf.get_variable('W', [state_size, num_classes])
b = tf.get_variable('b', [num_classes], initializer=tf.constant_initializer(0.0))
logits = [tf.matmul(rnn_output, W) + b for rnn_output in rnn_outputs]
predictions = [tf.nn.softmax(logit) for logit in logits]
# Turn our y placeholder into a list labels
y_as_list = [tf.squeeze(i, squeeze_dims=[1]) for i in tf.split(1, num_steps, y)]
#losses and train_step
losses = [tf.nn.sparse_softmax_cross_entropy_with_logits(logit,label) for \
logit, label in zip(logits, y_as_list)]
total_loss = tf.reduce_mean(losses)
train_step = tf.train.AdagradOptimizer(learning_rate).minimize(total_loss)
def train():
with tf.Session() as sess:
#load the model
training_losses = []
for idx, epoch in enumerate(gen_epochs(num_epochs, num_steps)):
training_loss = 0
training_state = np.zeros((batch_size, state_size))
if verbose:
print("\nEPOCH", idx)
for step, (X, Y) in enumerate(epoch):
tr_losses, training_loss_, training_state, _ = \
sess.run([losses,
total_loss,
final_state,
train_step],
feed_dict={x:X, y:Y, init_state:training_state})
training_loss += training_loss_
if step % 100 == 0 and step > 0:
if verbose:
print("Average loss at step", step,
"for last 250 steps:", training_loss/100)
training_losses.append(training_loss/100)
training_loss = 0
#save the model
def generate_seq():
with tf.Session() as sess:
#load the model
# load saved model for generating task
new_sentence = [START_TOKEN]
# Here I want to generate a sentence until END_TOKEN is generated.
while new_sentence[-1] != END_TOKEN:
logits = sess.run(final_state,{x:np.asarray([new_sentence])})
# get argmax(logits) or sample(logits)
next_word = argmax(logits[0])
new_sentence.append(next_word)
print(new_sentence)