我正在尝试在有限的空间内优化对试验成员的分组/选择,并且遇到了一些麻烦。我已经准备好进行优化的pandas数据框,并且可以运行线性优化而没有问题,除了需要添加的一个约束之外。我正在尝试使用二进制文件进行选择(但是由于任何原因我都没有选择二进制文件,因此如果使用其他方法可以解决此问题,则可以切换)。在下一轮试验中,我需要最小化组合试验时间以进行选择,但是由于试验的性质,一些受试者已经进行了多次试验。我想基于最短的时间来选择主题的最佳组合,但允许某些主题多次出现在列表中以进行优化(因此我不必事先手动删除它们)。例如:
Name Trial ID Time (ms) Selected?
Mary Smith A 11001 33 1
John Doe A 11002 24 0
James Smith B 11003 52 0
Stacey Doe A 11004 21 1
John Doe B 11002 19 1
是否有某种方法可以允许2个John Doe条目进行优化,但是将输出限制为仅选择他一个?谢谢您的宝贵时间!
答案 0 :(得分:0)
如果您需要记录要删除的所有值,则可以像这样使用duplicated
函数
# First sort your dataframe
df.sort_values(['Name', 'Time (ms)'], inplace=True)
# Make a new column of duplicated values based only on name
df['duplicated'] = df.duplicated(subset=['Name'])
# You can then access the duplicates, but still have a log of the rejects
df.query('not duplicated')
# Name Trial ID Time (ms) Selected? duplicated
# 2 James Smith B 11003 52 0 False
# 1 John Doe A 11002 24 0 False
# 0 Mary Smith A 11001 33 1 False
# 3 Stacey Doe A 11004 21 1 False
df.query('duplicated')
# Name Trial ID Time (ms) Selected? duplicated
# 4 John Doe B 11002 19 1 True