如何使用训练有素的神经预测张量流

时间:2018-06-25 18:48:57

标签: python tensorflow

这个问题也许是通用的,但是我已经在网上搜索了很长一段时间,却没有以我能理解的方式找到它。
我改编了TensorFlow tutorial上的代码,内容如下:

import numpy as np
import tensorflow as tf


tf.logging.set_verbosity(tf.logging.INFO)

def cnn_model_fn(features, labels, mode):
    '''Model function for CNN'''
    #Input Layer
    #Reshape X to 4-D tensor: [batch_size, width, height, channels]
    input_layer = tf.reshape(features['x'],[-1, 28, 28, 1])

    #Convolutional Layer 
    #Computes 3 features maps using 5x5 filter with sigmoid activation
    #Input Tensor Shape: [batch_size, 28, 28, 1]
    #Output Tensor Shape: [batch_size, 24, 24, 20]
    conv = tf.layers.conv2d(
            inputs = input_layer,
            filters = 20,
            kernel_size = [5,5],
            activation = tf.nn.sigmoid)

    #Pooling Layer 
    #Max pooling layer with a 2x2 flter and stride of 2
    #Input Tensor Shape: [batch_size, 24, 24, 20]
    #Output Tensor Shape: [batch_size, 12, 12, 20]
    pool = tf.layers.max_pooling2d(
            inputs = conv,
            pool_size = [2, 2],
            strides = 2)

    #Flatten tensor into a batch of vectors
    #Input Tensor Shape: [batch_size, 12, 12, 20]
    #Output Tensor Shape: [batch_size, 12 * 12 * 20]
    pool_flat = tf.reshape(pool, [-1, 12 * 12 * 20])

    #Fully Connected Layer = dense layer
    #
    #Input Tensor Shape: [batch_size, 12 * 12 * 20]
    #Output Tensor Shape: [batch_size, 100]
    fully_cnted = tf.layers.dense(
            inputs = pool_flat,
            units = 100,
            activation = tf.nn.sigmoid)

    #Output Layer
    #Softmax
    #Input Tensor Shape: [batch_size, 100]
    #Output Tensor Shape: [batch_size, 10]
    logits = tf.layers.dense(
            inputs = fully_cnted,
            units = 10,
            activation = tf.nn.softmax)

    predictions = {
        #Generate predictions (for PREDICT and EVAL mode)
        "classes":tf.argmax(input = logits, axis = 1),
        #Add `softmax_tensor` to the graph. It is used for PREDICT and by the
        #`logging_hook´.
        "probabilities": tf.nn.softmax(logits, name = "softmax_tensor")
        }

    if mode == tf.estimator.ModeKeys.PREDICT:
        return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

    #Calculate Loss (for both TRAIN and EVAL modes)
    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)

    #Configura the Training Op (for TRAIN mode)
    if mode == tf.estimator.ModeKeys.TRAIN:
        optimizer = tf.train.GradientDescentOptimizer(learning_rate = 0.1)
        train_op = optimizer.minimize(
            loss=loss,
            global_step = tf.train.get_global_step())
        return tf.estimator.EstimatorSpec(mode = mode, 
                                          loss = loss, 
                                          train_op = train_op)

    #Add evaluations metrics (for EVAL mode)
    eval_metric_ops = {
        "accuracy": tf.metrics.accuracy(
            labels = labels, predictions = predictions["classes"])}
    return tf.estimator.EstimatorSpec(
        mode = mode, loss = loss, eval_metric_ops = eval_metric_ops)


def main(unused_argv):
    #Load training, validation and test data
    mnist = tf.contrib.learn.datasets.load_dataset('mnist')
    train_data = mnist.train.images #return a np.array
    train_labels = np.asarray(mnist.train.labels, dtype = np.int32)
    #val_data = mnist.test.images #returns a np.array
    #val_labels = np.asarray(mnist.test.labels, dtype = np.int32)
    test_data = mnist.test.images #returns a np.array
    test_labels = np.asarray(mnist.test.labels, dtype = np.int32)

    #Create the Estimator
    mnist_classifier = tf.estimator.Estimator(
        model_fn = cnn_model_fn, model_dir="/tmp/mnist_convnet_model")

    #Set up logging for predictions
    #Log the Values in the "softmax" tensor with label "probabilities
    tensors_to_log = {"probabilities": "softmax_tensor"}
    logging_hook = tf.train.LoggingTensorHook(
        tensors=tensors_to_log, every_n_iter=50)    

    #Train the model
    train_input_fn = tf.estimator.inputs.numpy_input_fn(
            x={'x':train_data},
            y=train_labels,
            batch_size=10,
            num_epochs=60,
            shuffle=True)
    mnist_classifier.train(
            input_fn=train_input_fn,
            hooks=[logging_hook])

    #Evaluate the model and print results
    eval_input_fn = tf.estimator.inputs.numpy_input_fn(
            x={"x":test_data},
            y=test_labels,
            num_epochs=1,
            shuffle=False)
    eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
    print(eval_results) 



if __name__ == "__main__":
  tf.app.run()

使用这种结构,在训练结束时我的准确性为96%,并将其保存为几个model.cpkt文件。

如何使用此模型来预测输入like this,不一定是Android应用,而是像MNIST一样预测28 * 28的jpg之类的输入,我正在寻找任何类型的在这里提供帮助(教程,书籍...)。

0 个答案:

没有答案