我为时间序列数据实现了Keras seq2seq模型,当我以相同的序列长度对其进行测试时,它运行良好。当我想使用target_seqs> input_seqs(length = 10000)进行推断时,会收到以下消息: 索引10000超出轴10000的大小10000
代码如下:
num_encoder_tokens = 1
num_decoder_tokens = 1
encoder_seq_length = None
decoder_seq_length = None
batch_size = #100
epochs = #1
hidden_units= #30
timesteps= #20
#Input Data
input_seqs=train #data shape(10000,20,1)
target_seqs=reversed_train # shape(10000,20,1)
with same shape as above
#define training encoder
encoder_inputs = Input(shape=(None, num_encoder_tokens))
encoder = LSTM(hidden_units, return_state=True)
encoder_outputs, state_h, state_c = encoder(encoder_inputs)
encoder_states = [state_h, state_c]
#define training decoder
decoder_inputs = Input(shape=(None,num_decoder_tokens))
decoder_lstm = LSTM(hidden_units, return_sequences=True,
return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs,
initial_state=encoder_states)
decoder_dense = Dense(num_encoder_tokens, activation='tanh')
decoder_outputs = decoder_dense(decoder_outputs)
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
#training
model.compile(optimizer='adam', loss='mse')
model.fit([input_seqs, target_seqs], target_seqs,batch_size=batch_size,
epochs=epochs,validation_split=0.2)
#Testdata
target_seqs=test#shape(20000,20,1)
#define inference encoder
encoder_model = Model(encoder_inputs, encoder_states)
#define inference decoder
decoder_state_input_h = Input(shape=(hidden_units,))
decoder_state_input_c = Input(shape=(hidden_units,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_outputs, state_h, state_c = decoder_lstm(decoder_inputs,
initial_state=decoder_states_inputs)
decoder_states = [state_h, state_c]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = Model([decoder_inputs] + decoder_states_inputs,
[decoder_outputs] + decoder_states)
#Initalize states for decoder
states_values = encoder_model.predict(input_seqs)
#empty target
target_seq = np.zeros((1, 1, num_decoder_tokens))
#predict
output=list()
for t in range(timesteps):
output_tokens, h, c = decoder_model.predict([target_seqs] + states_values)
output.append(output_tokens[0,0,:])
states_values = [h,c]
target_seq = output_tokens
该问题如何解决?