如何绘制高维数据集的热图?

时间:2018-06-23 03:21:17

标签: python-3.x data-visualization heatmap seaborn

如果您能让我知道如何为具有约150个特征的大型数据集绘制高分辨率热图,我将不胜感激。

我的代码如下:

XX = pd.read_csv('Financial Distress.csv')

y = np.array(XX['Financial Distress'].values.tolist())
y = np.array([0 if i > -0.50 else 1 for i in y])
XX = XX.iloc[:, 3:87]
df=XX
df["target_var"]=y.tolist()
target_var=["target_var"]

fig, ax = plt.subplots(figsize=(8, 6))
correlation = df.select_dtypes(include=['float64',
                                             'int64']).iloc[:, 1:].corr()
sns.heatmap(correlation, ax=ax, vmax=1, square=True)
plt.xticks(rotation=90)
plt.yticks(rotation=360)
plt.title('Correlation matrix')
plt.tight_layout()
plt.show()
k = df.shape[1]  # number of variables for heatmap
fig, ax = plt.subplots(figsize=(9, 9))
corrmat = df.corr()
# Generate a mask for the upper triangle
mask = np.zeros_like(corrmat, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True
cols = corrmat.nlargest(k, target_var)[target_var].index
cm = np.corrcoef(df[cols].values.T)
sns.set(font_scale=1.0)
hm = sns.heatmap(cm, mask=mask, cbar=True, annot=True,
                 square=True, fmt='.2f', annot_kws={'size': 7},
                 yticklabels=cols.values,
                 xticklabels=cols.
                 values)
plt.xticks(rotation=90)
plt.yticks(rotation=360)
plt.title('Annotated heatmap matrix')
plt.tight_layout()
plt.show()

它可以正常工作,但是具有40多个特征的数据集绘制的热图太小。 enter image description here

预先感谢

2 个答案:

答案 0 :(得分:1)

调整figsize和dpi对我很有用。

我修改了代码,并将热图的大小增加了一倍,达到165 x165。渲染需要一段时间,但是png看起来不错。我的后端是“ module://ipykernel.pylab.backend_inline”。

正如我最初的回答中所述,我很确定您在创建新对象之前忘了关闭图形对象。如果出现怪异的效果,请在plt.close("all")之前尝试fig, ax = plt.subplots()

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

print(plt.get_backend())

# close any existing plots
plt.close("all")

df = pd.read_csv("Financial Distress.csv")
# select out the desired columns
df = df.iloc[:, 3:].select_dtypes(include=['float64','int64'])

# copy columns to double size of dataframe
df2 = df.copy()
df2.columns = "c_" + df2.columns
df3 = pd.concat([df, df2], axis=1)

# get the correlation coefficient between the different columns
corr = df3.iloc[:, 1:].corr()
arr_corr = corr.as_matrix()
# mask out the top triangle
arr_corr[np.triu_indices_from(arr_corr)] = np.nan

fig, ax = plt.subplots(figsize=(24, 18))

hm = sns.heatmap(arr_corr, cbar=True, vmin=-0.5, vmax=0.5,
                 fmt='.2f', annot_kws={'size': 3}, annot=True, 
                 square=True, cmap=plt.cm.Blues)

ticks = np.arange(corr.shape[0]) + 0.5
ax.set_xticks(ticks)
ax.set_xticklabels(corr.columns, rotation=90, fontsize=8)
ax.set_yticks(ticks)
ax.set_yticklabels(corr.index, rotation=360, fontsize=8)

ax.set_title('correlation matrix')
plt.tight_layout()
plt.savefig("corr_matrix_incl_anno_double.png", dpi=300)

完整数字: corr_matrix_anno_double_image 左上部分的缩放: zoom_of_top_end_image

答案 1 :(得分:0)

如果我正确理解了您的问题,我认为您要做的就是增加您的图形尺寸:

f, ax = plt.subplots(figsize=(20, 20))

代替

f, ax = plt.subplots(figsize=(9, 9))