我对R中的核密度估计有一个问题。我有一个5维数据,它包括(x,y,z)位置,发生的时间和某些事件的大小(例如地震)(I&#) 39;附上数据集)。我在R中编写了以下代码,以便找到5D内核密度估计:
library(ks)
library(rgl)
kern <- read.table(file.choose(), sep=",")
evpts <- do.call(expand.grid,lapply(kern,quantile, prob=c(.1,.15,.2,.25,.3,.35,.4,.45,.5,.55,.6,.65,.7,.75,.8,.85,.9,.95)))
hat <- kde(kern, eval.points= evpts)
str(hat)
现在,我想要可视化核密度估计。我更喜欢在一个图中显示关于所有5个维度的内核(通过对点使用不同的颜色或大小)或者至少分别关于三个维度。你对我有什么建议吗?
以下是数据:
x y z time size
422.697323 164.19886 2.457419 8.083796636 0.83367586
423.008236 163.32434 0.5551326 37.58477455 0.893893903
204.733908 218.36365 1.9397874 37.88324312 0.912809449
203.963056 218.4808 0.3723791 43.21775903 0.926406005
100.727581 46.60876 1.4022341 49.41510519 0.782807523
453.335182 244.25521 1.6292517 51.73779175 0.903910803
134.909462 210.96333 2.2389119 53.13433521 0.896529401
135.300562 212.02055 0.6739541 67.55073745 0.748783521
258.237117 134.29735 2.1205291 76.34032587 0.735699304
341.305271 149.26953 3.718958 94.33975483 0.849509216
307.138925 59.60571 0.6311074 106.9636715 0.987923188
307.76875 58.91453 2.6496741 113.8515307 0.802115718
415.025535 217.17398 1.7155688 115.7464603 0.875580325
414.977687 216.73327 1.7107369 115.9776948 0.767143582
311.006135 173.24378 2.7819572 120.8079566 0.925380118
310.116929 174.28122 4.3318722 129.2648401 0.776528535
347.260911 37.34946 3.5155427 136.7851291 0.851787115
351.317624 33.65703 0.5806926 138.7349284 0.909723017
4.471892 59.42068 1.4062959 139.0543783 0.967270976
5.480223 59.72857 2.7326106 139.2114277 0.987787428
199.513023 21.53302 2.5163259 143.5895625 0.864164659
198.718031 23.50163 0.4801849 147.2280466 0.741587333
26.650517 35.2019 0.8246514 150.4876506 0.744788202
25.089379 90.47825 0.8700944 152.1944046 0.777252476
26.307439 88.41552 2.4422487 155.9090026 0.952215177
234.282901 236.11422 1.8115261 155.9658144 0.776284654
235.052948 236.77437 1.9644963 156.6900297 0.944285448
23.048202 98.6261 3.4573048 159.7700912 0.773057491
21.516695 98.05431 2.5029284 160.8202997 0.978779087
213.936324 151.87013 3.1042192 161.0612489 0.80499513
277.887935 197.25753 1.3659279 163.673142 0.758978575
277.239746 197.54001 2.2109361 166.2629868 0.775325157
答案 0 :(得分:0)
根据时间四分位数将“大小”分为4个颜色类,根据“时间”四分位数将4个线类型分为4个颜色类。它不使用内核密度信息:
require(MASS)
png();parcoord(dat, col=cut(dat$size, quantile(dat$size, c(0,.25,.5,.75,1)), include.lowest=TRUE), lty= as.numeric(cut(dat$time, quantile(dat$time, c(0,.25,.5,.75,1)), include.lowest=TRUE))); dev.off()