# data
set.seed (123)
xvar <- c(rnorm (1000, 50, 30), rnorm (1000, 40, 10), rnorm (1000, 70, 10))
yvar <- xvar + rnorm (length (xvar), 0, 20)
myd <- data.frame (xvar, yvar)
# density plot for xvar
upperp = 80 # upper cutoff
lowerp = 30 # lower cutoff
x <- myd$xvar
plot(density(x))
dens <- density(x)
x11 <- min(which(dens$x <= lowerp))
x12 <- max(which(dens$x <= lowerp))
x21 <- min(which(dens$x > upperp))
x22 <- max(which(dens$x > upperp))
with(dens, polygon(x = c(x[c(x11, x11:x12, x12)]),
y = c(0, y[x11:x12], 0), col = "green"))
with(dens, polygon(x = c(x[c(x21, x21:x22, x22)]),
y = c(0, y[x21:x22], 0), col = "red"))
abline(v = c(mean(x)), lwd = 2, lty = 2, col = "red")
# density plot with yvar
upperp = 70 # upper cutoff
lowerp = 30 # lower cutoff
x <- myd$yvar
plot(density(x))
dens <- density(x)
x11 <- min(which(dens$x <= lowerp))
x12 <- max(which(dens$x <= lowerp))
x21 <- min(which(dens$x > upperp))
x22 <- max(which(dens$x > upperp))
with(dens, polygon(x = c(x[c(x11, x11:x12, x12)]),
y = c(0, y[x11:x12], 0), col = "green"))
with(dens, polygon(x = c(x[c(x21, x21:x22, x22)]),
y = c(0, y[x21:x22], 0), col = "red"))
abline(v = c(mean(x)), lwd = 2, lty = 2, col = "red")
我需要绘制双向密度图,我不确定有比以下更好的方法:
ggplot(myd,aes(x=xvar,y=yvar))+
stat_density2d(aes(fill=..level..), geom="polygon") +
scale_fill_gradient(low="blue", high="green") + theme_bw()
我想将所有三种类型合并为一种(我不知道我是否可以在ggplot中创建双向图),对于解决方案是否在ggplot或base或者混合中没有优先选择。考虑到R的稳健性,我希望这是可行的项目。我个人更喜欢ggplot2。
注意:此图中的下部阴影不正确,红色应始终较低,xvar和yvar图中的绿色上部,对应于xy密度图中的阴影区域。
编辑:图表上的最终期望(感谢seth和jon非常接近的答案) (1)去除空间和轴刻度标签等使其紧凑 (2)网格对齐,使中间的标记刻度和网格应与边标记对齐,标签和图的大小看起来相同。
答案 0 :(得分:24)
以下是将多个绘图与对齐组合的示例:
library(ggplot2)
library(grid)
set.seed (123)
xvar <- c(rnorm (100, 50, 30), rnorm (100, 40, 10), rnorm (100, 70, 10))
yvar <- xvar + rnorm (length (xvar), 0, 20)
myd <- data.frame (xvar, yvar)
p1 <- ggplot(myd,aes(x=xvar,y=yvar))+
stat_density2d(aes(fill=..level..), geom="polygon") +
coord_cartesian(c(0, 150), c(0, 150)) +
opts(legend.position = "none")
p2 <- ggplot(myd, aes(x = xvar)) + stat_density() +
coord_cartesian(c(0, 150))
p3 <- ggplot(myd, aes(x = yvar)) + stat_density() +
coord_flip(c(0, 150))
gt <- ggplot_gtable(ggplot_build(p1))
gt2 <- ggplot_gtable(ggplot_build(p2))
gt3 <- ggplot_gtable(ggplot_build(p3))
gt1 <- ggplot2:::gtable_add_cols(gt, unit(0.3, "null"), pos = -1)
gt1 <- ggplot2:::gtable_add_rows(gt1, unit(0.3, "null"), pos = 0)
gt1 <- ggplot2:::gtable_add_grob(gt1, gt2$grobs[[which(gt2$layout$name == "panel")]],
1, 4, 1, 4)
gt1 <- ggplot2:::gtable_add_grob(gt1, gt2$grobs[[which(gt2$layout$name == "axis-l")]],
1, 3, 1, 3, clip = "off")
gt1 <- ggplot2:::gtable_add_grob(gt1, gt3$grobs[[which(gt3$layout$name == "panel")]],
4, 6, 4, 6)
gt1 <- ggplot2:::gtable_add_grob(gt1, gt3$grobs[[which(gt3$layout$name == "axis-b")]],
5, 6, 5, 6, clip = "off")
grid.newpage()
grid.draw(gt1)
请注意,这适用于gglot2 0.9.1,在将来的版本中,您可以更轻松地完成此操作。
最后
你可以通过以下方式做到:
library(ggplot2)
library(grid)
set.seed (123)
xvar <- c(rnorm (100, 50, 30), rnorm (100, 40, 10), rnorm (100, 70, 10))
yvar <- xvar + rnorm (length (xvar), 0, 20)
myd <- data.frame (xvar, yvar)
p1 <- ggplot(myd,aes(x=xvar,y=yvar))+
stat_density2d(aes(fill=..level..), geom="polygon") +
geom_polygon(aes(x, y),
data.frame(x = c(-Inf, -Inf, 30, 30), y = c(-Inf, 30, 30, -Inf)),
alpha = 0.5, colour = NA, fill = "red") +
geom_polygon(aes(x, y),
data.frame(x = c(Inf, Inf, 80, 80), y = c(Inf, 80, 80, Inf)),
alpha = 0.5, colour = NA, fill = "green") +
coord_cartesian(c(0, 120), c(0, 120)) +
opts(legend.position = "none")
xd <- data.frame(density(myd$xvar)[c("x", "y")])
p2 <- ggplot(xd, aes(x, y)) +
geom_area(data = subset(xd, x < 30), fill = "red") +
geom_area(data = subset(xd, x > 80), fill = "green") +
geom_line() +
coord_cartesian(c(0, 120))
yd <- data.frame(density(myd$yvar)[c("x", "y")])
p3 <- ggplot(yd, aes(x, y)) +
geom_area(data = subset(yd, x < 30), fill = "red") +
geom_area(data = subset(yd, x > 80), fill = "green") +
geom_line() +
coord_flip(c(0, 120))
gt <- ggplot_gtable(ggplot_build(p1))
gt2 <- ggplot_gtable(ggplot_build(p2))
gt3 <- ggplot_gtable(ggplot_build(p3))
gt1 <- ggplot2:::gtable_add_cols(gt, unit(0.3, "null"), pos = -1)
gt1 <- ggplot2:::gtable_add_rows(gt1, unit(0.3, "null"), pos = 0)
gt1 <- ggplot2:::gtable_add_grob(gt1, gt2$grobs[[which(gt2$layout$name == "panel")]],
1, 4, 1, 4)
gt1 <- ggplot2:::gtable_add_grob(gt1, gt2$grobs[[which(gt2$layout$name == "axis-l")]],
1, 3, 1, 3, clip = "off")
gt1 <- ggplot2:::gtable_add_grob(gt1, gt3$grobs[[which(gt3$layout$name == "panel")]],
4, 6, 4, 6)
gt1 <- ggplot2:::gtable_add_grob(gt1, gt3$grobs[[which(gt3$layout$name == "axis-b")]],
5, 6, 5, 6, clip = "off")
grid.newpage()
grid.draw(gt1)
答案 1 :(得分:10)
在我上面链接的示例中,您需要gridExtra包。 这就是你给的。
g=ggplot(myd,aes(x=xvar,y=yvar))+ stat_density2d(aes(fill=..level..), geom="polygon") + scale_fill_gradient(low="blue", high="green") + theme_bw()
使用geom_rect绘制两个区域
gbig=g+geom_rect(data=myd,
aes( NULL,
NULL,
xmin=0,
xmax=lowerp,
ymin=-10,
ymax=20),
fill='red',
alpha=.0051,
inherit.aes=F)+
geom_rect(aes( NULL,
NULL,
xmin=upperp,
xmax=100,
ymin=upperp,
ymax=130),
fill='green',
alpha=.0051,
inherit.aes=F)+
opts(legend.position = "none")
这是一个简单的ggplot直方图;它没有你的彩色区域, 但它们很容易
dens_top <- ggplot()+geom_density(aes(x)) dens_right <- ggplot()+geom_density(aes(x))+coord_flip()
制作一个空图表以填充角落
empty <- ggplot()+geom_point(aes(1,1), colour="white")+
opts(axis.ticks=theme_blank(),
panel.background=theme_blank(),
axis.text.x=theme_blank(),
axis.text.y=theme_blank(),
axis.title.x=theme_blank(),
axis.title.y=theme_blank())
然后使用grid.arrange函数:
library(gridExtra) grid.arrange(dens_top, empty , gbig, dens_right, ncol=2, nrow=2, widths=c(4, 1), heights=c(1, 4))
不是很漂亮,但这个想法就在那里。 你必须确保尺度匹配!
答案 2 :(得分:9)
以Seth的回答为基础(谢谢Seth,你应该获得所有学分),我改进了提问者提出的一些问题。由于评论太短,无法回答所有问题,我选择将其作为答案本身。 还有一些问题,需要你的帮助:
# data
set.seed (123)
xvar <- c(rnorm (1000, 50, 30), rnorm (1000, 40, 10), rnorm (1000, 70, 10))
yvar <- xvar + rnorm (length (xvar), 0, 20)
myd <- data.frame (xvar, yvar)
require(ggplot2)
# density plot for xvar
upperp = 80 # upper cutoff
lowerp = 30
中间数字
g=ggplot(myd,aes(x=xvar,y=yvar))+
stat_density2d(aes(fill=..level..), geom="polygon") +
scale_fill_gradient(low="blue", high="green") +
scale_x_continuous(limits = c(0, 110)) +
scale_y_continuous(limits = c(0, 110)) + theme_bw()
geom_rect两个区域
gbig=g+ geom_rect(data=myd, aes( NULL, NULL, xmin=0,
xmax=lowerp,ymin=0, ymax=20), fill='red', alpha=.0051,inherit.aes=F)+
geom_rect(aes(NULL, NULL, xmin=upperp, xmax=110,
ymin=upperp, ymax=110), fill='green',
alpha=.0051,
inherit.aes=F)+
opts(legend.position = "none",
plot.margin = unit(rep(0, 4), "lines"))
带阴影区域的顶部直方图
x.dens <- density(myd$xvar)
df.dens <- data.frame(x = x.dens$x, y = x.dens$y)
dens_top <- ggplot()+geom_density(aes(myd$xvar, y = ..density..))
+ scale_x_continuous(limits = c(0, 110)) +
geom_area(data = subset(df.dens, x <= lowerp), aes(x=x,y=y), fill = 'red')
+ geom_area(data = subset(df.dens, x >= upperp), aes(x=x,y=y), fill = 'green')
+ opts (axis.text.x=theme_blank(), axis.title.x=theme_blank(),
plot.margin = unit(rep(0, 4), "lines")) + xlab ("") + ylab ("") + theme_bw()
带有阴影区域的右直方图
y.dens <- density(myd$yvar)
df.dens.y <- data.frame(x = y.dens$x, y = y.dens$y)
dens_right <- ggplot()+geom_density(aes(myd$yvar, y = ..density..))
+ scale_x_continuous(limits = c(0, 110)) +
geom_area(data = subset(df.dens.y, x <= lowerp), aes(x=x,y=y),
fill = 'red')
+ geom_area(data = subset(df.dens.y, x >= upperp), aes(x=x,y=y),
fill = 'green')
+ coord_flip() +
opts (axis.text.x=theme_blank(), axis.title.x=theme_blank(),
plot.margin = unit(rep(0, 4), "lines")) + xlab ("") + ylab ("")
+ theme_bw()
制作一个空图表以填充角落
empty <- ggplot()+geom_point(aes(1,1), colour="white")+
scale_x_continuous(breaks = NA) + scale_y_continuous(breaks = NA) +
opts(axis.ticks=theme_blank(),
panel.background=theme_blank(),
axis.text.x=theme_blank(),
axis.text.y=theme_blank(),
axis.title.x=theme_blank(),
axis.title.y=theme_blank())
然后使用grid.arrange函数:
library(gridExtra)
grid.arrange(dens_top, empty , gbig, dens_right, ncol=2,nrow=2,
widths=c(2, 1), heights=c(1, 2))
PS:(1)有人可以帮助完美地对齐图形吗? (2)有人可以帮助删除图之间的额外空间,我尝试调整边距 - 但是x和y密度图和中心图之间存在空间。