R的Logit模型如何处理stats包中的类别变量?

时间:2018-06-21 16:09:34

标签: r model statistics categorical-data

我正在进行逻辑回归,我注意到向量中的每个唯一字符串都接收到自己的参数。 R是否根据向量内每个唯一值的集合优化结果变量的预测?

library(stats)
df = as.data.frame( matrix(c("a","a","b","c","c","b","a","a","b","b","c",1,0,0,0,1,0,1,1,0,1,0,1,0,100,10,8,3,5,6,13,10,4,"SF","CHI","NY","NY","SF","SF","CHI","CHI","SF","CHI","NY"), ncol = 4))
colnames(df) = c("letter","number1","number2","city")
df$letter = as.factor(df$letter)
df$city = as.factor(df$city)
df$number1 = as.numeric(df$number1)
df$number2 = as.numeric(df$number2)

glm(number1 ~ .,data=df)

#Call:  glm(formula = number1 ~ ., data = df)

#Coefficients:
#  (Intercept)      letterb      letterc      number2       cityNY       citySF  
#1.57191     -0.25227     -0.01424      0.04593     -0.69269     -0.20634  

#Degrees of Freedom: 10 Total (i.e. Null);  5 Residual
#Null Deviance:     2.727 
#Residual Deviance: 1.35    AIC: 22.14

以上示例中的Logit处理城市如何?

0 个答案:

没有答案