亲爱的TensorFlow社区,
我正在使用tf.contrib.factorization.KMeansClustering
训练分类器,
但是培训的进度确实很慢,只使用了我GPU的1%。
但是,我的4个CPU内核的使用率一直在35%左右。
是不是为CPU写的K-Means数比GPU多了?
有没有一种方法可以将更多计算转移到GPU或其他 其他加快培训的方法?
下面是我的训练脚本(Python3)。
谢谢您的时间。
import tensorflow as tf
def parser(record):
features={
'feats': tf.FixedLenFeature([], tf.string),
}
parsed = tf.parse_single_example(record, features)
feats = tf.convert_to_tensor(tf.decode_raw(parsed['feats'], tf.float64))
return {'feats': feats}
def my_input_fn(tfrecords_path):
dataset = (
tf.data.TFRecordDataset(tfrecords_path)
.map(parser)
.batch(1024)
)
iterator = dataset.make_one_shot_iterator()
batch_feats = iterator.get_next()
return batch_feats
### SPEC FUNCTIONS ###
train_spec_kmeans = tf.estimator.TrainSpec(input_fn = lambda: my_input_fn('/home/ubuntu/train.tfrecords') , max_steps=10000)
eval_spec_kmeans = tf.estimator.EvalSpec(input_fn = lambda: my_input_fn('/home/ubuntu/eval.tfrecords') )
### INIT ESTIMATOR ###
KMeansEstimator = tf.contrib.factorization.KMeansClustering(
num_clusters=500,
feature_columns = [tf.feature_column.numeric_column(
key='feats',
dtype=tf.float64,
shape=(377,),
)],
use_mini_batch=True)
### TRAIN & EVAL ###
tf.estimator.train_and_evaluate(KMeansEstimator, train_spec_kmeans, eval_spec_kmeans)
最好, 乔什
答案 0 :(得分:4)
这是迄今为止我对time
信息的最佳答案,它是基于Eliethesaiyan的答案和link to docs的信息。
我原来的Dataset
代码块和性能:
dataset = (
tf.data.TFRecordDataset(tfrecords_path)
.map(parse_fn)
.batch(1024)
)
real 1m36.171s
user 2m57.756s
sys 0m42.304s
Eliethesaiyan的答案(prefetch
+ num_parallel_calls
)
dataset = (
tf.data.TFRecordDataset(tfrecords_path)
.map(parse_fn,num_parallel_calls=multiprocessing.cpu_count())
.batch(1024)
.prefetch(1024)
)
real 0m41.450s
user 1m33.120s
sys 0m18.772s
使用map_and_batch
+ num_parallel_batches
+ prefetch
的文档中:
dataset = (
tf.data.TFRecordDataset(tfrecords_path)
.apply(
tf.contrib.data.map_and_batch(
map_func=parse_fn,
batch_size=1024,
num_parallel_batches=multiprocessing.cpu_count()
)
)
.prefetch(1024)
)
real 0m32.855s
user 1m11.412s
sys 0m10.408s
答案 1 :(得分:2)
dataset = (
tf.data.TFRecordDataset(tfrecords_path)
.map(parser,num_parallel_calls=multiprocessing.cpu_count())
.batch(1024)
)
dataset = dataset.prefetch(1024)
这是有关使用TfRecords here
的最佳实践指南