我在寻找这个问题的答案时遇到了一些麻烦,所以我想知道是否有人可以帮助我。
以下是一些背景信息:
我有两个数据帧df1和df2:
val df1: DataFrame = List((1, 2, 3), (2, 3, 3)).toDF("col1", "col2", "col3")
val df2: DataFrame = List((1, 5, 6), (1, 2, 5)).toDF("col1", "col2_bis", "col3_bis")
我想做的是
在“col1”上加入那些数据帧df1和df2,但只将行保持在哪里 df1(“col2”)< DF2( “col2_bis”)
所以我的问题是,这样做是否更有效:
df1.join(df2, df1("col1") === df2("col1") and df1("col2") < df2("col2_bis"), "inner")
或者那样:
df1.join(df2, Seq("col1"), "inner").filter(col("col2") < col("col2_bis"))
结果将是:
Array(Row(1, 2, 3, 5, 6)) with columns ("col1", "col2", "col2_bis", "col3", "col3_bis")
这两个表达式是否已解析为同一个执行计划?或者其中一个比另一个更节省时间?
谢谢。
答案 0 :(得分:2)
如果查看查询计划,两者都相同,则与联接没有区别。催化剂优化器可以进行各种优化。
scala> val df2 = List((1, 5, 6), (1, 2, 5)).toDF("col1", "col2_bis", "col3_bis")
df2: org.apache.spark.sql.DataFrame = [col1: int, col2_bis: int ... 1 more field]
scala> val df1 = List((1, 2, 3), (2, 3, 3)).toDF("col1", "col2", "col3")
df1: org.apache.spark.sql.DataFrame = [col1: int, col2: int ... 1 more field]
scala> df1.join(df2, df1("col1") === df2("col1") and df1("col2") < df2("col2_bis"), "inner")
res0: org.apache.spark.sql.DataFrame = [col1: int, col2: int ... 4 more fields]
scala> df1.join(df2, Seq("col1"), "inner").filter(col("col2") < col("col2_bis"))
res1: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [col1: int, col2: int ... 3 more fields]
scala> res0.show
+----+----+----+----+--------+--------+
|col1|col2|col3|col1|col2_bis|col3_bis|
+----+----+----+----+--------+--------+
| 1| 2| 3| 1| 5| 6|
+----+----+----+----+--------+--------+
scala> res1.show
+----+----+----+--------+--------+
|col1|col2|col3|col2_bis|col3_bis|
+----+----+----+--------+--------+
| 1| 2| 3| 5| 6|
+----+----+----+--------+--------+
scala> res0.explain
== Physical Plan ==
*BroadcastHashJoin [col1#21], [col1#7], Inner, BuildRight, (col2#22 < col2_bis#8)
:- LocalTableScan [col1#21, col2#22, col3#23]
+- BroadcastExchange HashedRelationBroadcastMode(List(cast(input[0, int, false] as bigint)))
+- LocalTableScan [col1#7, col2_bis#8, col3_bis#9]
scala> res1.explain
== Physical Plan ==
*Project [col1#21, col2#22, col3#23, col2_bis#8, col3_bis#9]
+- *BroadcastHashJoin [col1#21], [col1#7], Inner, BuildRight, (col2#22 < col2_bis#8)
:- LocalTableScan [col1#21, col2#22, col3#23]
+- BroadcastExchange HashedRelationBroadcastMode(List(cast(input[0, int, false] as bigint)))
+- LocalTableScan [col1#7, col2_bis#8, col3_bis#9]