我试图通过基于某些列连接df2来过滤df1,然后根据过滤器从df1过滤一些行。
DF1:
+---------------+----------+
| channel|rag_status|
+---------------+----------+
| STS| green|
|Rapid Cash Plus| green|
| DOTOPAL| green|
| RAPID CASH| green|
DF2:
+---------------+----------+
| channel|rag_status|
+---------------+----------+
| STS| blue|
|Rapid Cash Plus| blue|
| DOTOPAL| blue|
+---------------+----------+
示例代码为:
df1.join(df2, df1.col("channel") === df2.col("channel"), "leftouter")
.filter(not(df1.col("rag_status") === "green"))
.select(df1.col("channel"), df1.col("rag_status")).show
它没有返回任何记录。
我希望输出低于一,在根据channel
和green
状态条件过滤记录后从df1返回。如果df2中有相同的通道且df1 rag_status
为绿色,则从df1中删除该记录并仅从df1返回剩余记录。
预期输出为:
+---------------+----------+
| channel|rag_status|
+---------------+----------+
| RAPID CASH| green|
答案 0 :(得分:3)
你可以这样做:
val df1=sc.parallelize(Seq(("STS","green"),("Rapid Cash Plus","green"),("RAPID CASH","green"))).toDF("channel","rag_status").where($"rag_status"==="green")
val df2=sc.parallelize(Seq(("STS","blue"),("Rapid Cash Plus","blue"),("DOTOPAL","blue"))).toDF("channel","rag_status").withColumnRenamed("rag_status","rag_status2")
val leftJoinResult=df1.join(df2,Array("channel"),"left")
val innerJoinResult=df1.join(df2,"channel")
val resultDF=leftJoinResult.except(innerJoinResult).drop("rag_status2")
resultDF.show
Spark-shell输出:
scala> val df1=sc.parallelize(Seq(("STS","green"),("Rapid Cash Plus","green"),("RAPID CASH","green"))).toDF("channel","rag_status").where($"rag_status"==="green")
df1: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [channel: string, rag_status: string]
scala> val df2=sc.parallelize(Seq(("STS","blue"),("Rapid Cash Plus","blue"),("DOTOPAL","blue"))).toDF("channel","rag_status").withColumnRenamed("rag_status","rag_status2")
df2: org.apache.spark.sql.DataFrame = [channel: string, rag_status2: string]
scala> val leftJoinResult=df1.join(df2,Array("channel"),"left")
leftJoinResult: org.apache.spark.sql.DataFrame = [channel: string, rag_status: string ... 1 more field]
scala> val innerJoinResult=df1.join(df2,"channel")
innerJoinResult: org.apache.spark.sql.DataFrame = [channel: string, rag_status: string ... 1 more field]
scala> val resultDF=leftJoinResult.except(innerJoinResult).drop("rag_status2")
resultDF: org.apache.spark.sql.DataFrame = [channel: string, rag_status: string]
scala> resultDF.show
+----------+----------+
| channel|rag_status|
+----------+----------+
|RAPID CASH| green|
+----------+----------+
答案 1 :(得分:1)
您可以使用以下代码获得预期的输出:
df1.join(df2, Seq("channel"), "leftouter").filter(row => row(3) != "blue")