来自https://algs4.cs.princeton.edu/53substring/
15。最长的回文子串。给定一个字符串s,找到最长的 子串是回文(或Watson-crick回文)。
解决方案:可以使用后缀树或线性时间解决 Manacher的算法。这是一个通常运行的更简单的解决方案 线性时间。首先,我们描述如何找到所有回文 线性时间长度恰好为L的子串:使用Karp-Rabin 迭代地形成长度为L的每个子串的散列(及其 反过来),并进行比较。既然你不知道L,反复加倍你的 猜测L,直到你知道最佳长度在L和2L之间。然后 使用二进制搜索来找到确切的长度。
我不明白的是最后一部分。
由于你不知道L,反复加倍你对L的猜测 知道最佳长度在L和2L之间。
我怎么知道什么是“最佳”长度?
P.S。:之前曾经问过最长的回文子串问题,但唯一有用的问题是this,而且它也没有使用Rabin-Karp。
修改: 这是我根据收到的答案提出的代码。
public static String longestPalindrome(String key) {
int r = 256;
long q = longRandomPrime();
boolean lastFound;
boolean found;
int l = 2;
do {
lastFound = indexOfPalindromeOfGivenLength(key, l, r, q) >= 0;
l *= 2;
found = indexOfPalindromeOfGivenLength(key, l, r, q) >= 0;
} while (l < key.length() && !(lastFound && !found));
int left = l / 2;
int right = l;
while (left <= right) {
System.out.printf("Searching for palindromes with length between: %d and %d%n", left, right);
int i = indexOfPalindromeOfGivenLength(key, left, r, q);
lastFound = i >= 0;
int j = indexOfPalindromeOfGivenLength(key, right, r, q);
found = j >= 0;
if (lastFound && found) return key.substring(j, j + right);
int x = left + (right - left) / 2;
if (!found) right = x;
else left = x;
}
return null;
}
private static int indexOfPalindromeOfGivenLength(String key, int l, int r, long q) {
System.out.printf("Searching for palindromes with length: %d%n", l);
for (int i = 0; i + l <= key.length(); i++) {
String s1 = key.substring(i, i + l);
long h1 = hash(s1, r, q);
long h2 = hash(new StringBuilder(s1).reverse().toString(), r, q);
if (h1 == h2) {
System.out.printf("Found palindrome: %s of length: %d%n", s1, s1.length());
return i;
}
}
System.out.printf("No palindromes of length %d exist%n", l);
return -1;
}
答案 0 :(得分:2)
一旦到达L
,其中有一个长度为L
的回文子字符串且没有长度为2L
的回文子字符串,您知道最佳长度介于{{1}之间}和L
。
两个发现你使用二进制搜索。首先尝试2L
如果有这个长度的回文子串与L + ceil(L/2)
和L + ceil(L/2)
做同样的事情,同样如果没有这个长度的回文子串,那么在{{1}中搜索}。