julia微分方程中多个数据集的参数估计

时间:2018-06-13 15:10:37

标签: julia mathematical-optimization least-squares differentialequations.jl

我一直在寻找,我找不到在julia中使用DifferentialEquations参数估计来直接适合多个数据集的方法。所以,假设我们有这个带有两个参数的简单微分方程:

f1 = function (du,u,p,t)
  du[1] = - p[1]*p[2] * u[1]
end

我们有u [1] vs t的实验数据集。每个数据集具有不同的p [2]值和/或不同的初始条件。 p [1]是我们想要估计的参数。 我可以通过求解for循环中的微分方程来实现这一点,该循环迭代不同的初始条件和p [2]值,将解存储在数组中并创建针对实验数据的损失函数。我想知道是否有一种方法可以在更少的代码行中执行此操作,例如,使用DiffEqBase.problem_new_parameters来设置每个数据集的条件。在将模型拟合到实验数据时,这是一种非常常见的情况,但我在文档中找不到一个好的例子。

提前谢谢你,

祝你好运

编辑1

上面表达的案例只是一个简化的例子。为了使其成为一个实际案例,我们可以从以下代码中创建一些虚假的实验数据:

using DifferentialEquations

# ODE function
f1 = function (du,u,p,t)
  du[1] = - p[1]*p[2] * u[1]
end

# Initial conditions and parameter values.
# p1 is the parameter to be estimated.
# p2 and u0 are experimental parameters known for each dataset.
u0 = [1.,2.]
p1 = .3
p2 = [.1,.2]
tspan = (0.,10.)
t=linspace(0,10,5)


# Creating data for 1st experimental dataset.
## Experimental conditions: u0 = 1. ; p[2] = .1
prob1 = ODEProblem(f1,[u0[1]],tspan,[p1,p2[1]])
sol1=solve(prob1,Tsit5(),saveat=t)

# Creating data for 2nd experimental dataset.
## Experimental conditions: u0 = 1. ; p[2] = .2
prob2 = ODEProblem(f1,[u0[1]],tspan,[p1,p2[2]])
sol2=solve(prob2,Tsit5(),saveat=t)

# Creating data for 3rd experimental dataset.
## Experimental conditions: u0 = 2. ; p[2] = .1
prob3 = ODEProblem(f1,[u0[2]],tspan,[p1,p2[1]])
sol3=solve(prob3,Tsit5(),saveat=t)

sol1,sol2和sol3现在是我们的实验数据,每个数据集使用不同的初始条件组合和p [2](代表一些实验变量(例如,温度,流量......)

目标是使用实验数据sol1,sol2和sol3估算p [1]的值,让DiffEqBase.problem_new_parameters或其他替代迭代超过实验条件。

1 个答案:

答案 0 :(得分:2)

您可以做的是创建一个MonteCarloProblem,它可以同时解决所有这三个问题:

function prob_func(prob,i,repeat)
  i < 3 ? u0 = [1.0] : u0 = [2.0]
  i == 2 ? p = (prob.p[1],0.2) : p = (prob.p[1],0.1)
  ODEProblem{true}(f1,u0,(0.0,10.0),p)
end
prob = MonteCarloProblem(prob1,prob_func = prob_func)

@time sol = solve(prob,Tsit5(),saveat=t,parallel_type = :none,
                  num_monte = 3)

然后创建一个损失函数,将每个解决方案与3个数据集进行比较,并将它们的损失加在一起。

loss1 = L2Loss(t,data1)
loss2 = L2Loss(t,data2)
loss3 = L2Loss(t,data3)
loss(sol) = loss1(sol[1]) + loss2(sol[2]) + loss3(sol[3])

最后,您需要告诉它如何将优化参数与其解决的问题联系起来。在这里,我们的MonteCarloProblem持有一个prob,它会在产生问题时从p[1]开始。我们要优化的值是p[1],所以:

function my_problem_new_parameters(prob,p)
  prob.prob.p[1] = p[1]
  prob
end

现在我们的目标恰恰是那些成分:

obj = build_loss_objective(prob,Tsit5(),loss,
                           prob_generator = my_problem_new_parameters,
                           num_monte = 3,
                           saveat = t)

现在让我们把它扔给Optim.jl的Brent方法:

using Optim
res = optimize(obj,0.0,1.0)

Results of Optimization Algorithm
 * Algorithm: Brent's Method
 * Search Interval: [0.000000, 1.000000]
 * Minimizer: 3.000000e-01
 * Minimum: 2.004680e-20
 * Iterations: 10
 * Convergence: max(|x - x_upper|, |x - x_lower|) <= 2*(1.5e-08*|x|+2.2e-16): true
 * Objective Function Calls: 11

它发现整体最佳值为0.3,这是我们用于生成数据的参数。

以下是完整的代码:

using DifferentialEquations

# ODE function
f1 = function (du,u,p,t)
  du[1] = - p[1]*p[2] * u[1]
end

# Initial conditions and parameter values.
# p1 is the parameter to be estimated.
# p2 and u0 are experimental parameters known for each dataset.
u0 = [1.,2.]
p1 = .3
p2 = [.1,.2]
tspan = (0.,10.)
t=linspace(0,10,5)

# Creating data for 1st experimental dataset.
## Experimental conditions: u0 = 1. ; p[2] = .1
prob1 = ODEProblem(f1,[u0[1]],tspan,[p1,p2[1]])
sol1=solve(prob1,Tsit5(),saveat=t)
data1 = Array(sol1)

# Creating data for 2nd experimental dataset.
## Experimental conditions: u0 = 1. ; p[2] = .2
prob2 = ODEProblem(f1,[u0[1]],tspan,[p1,p2[2]])
sol2=solve(prob2,Tsit5(),saveat=t)
data2 = Array(sol2)

# Creating data for 3rd experimental dataset.
## Experimental conditions: u0 = 2. ; p[2] = .1
prob3 = ODEProblem(f1,[u0[2]],tspan,[p1,p2[1]])
sol3=solve(prob3,Tsit5(),saveat=t)
data3 = Array(sol3)

function prob_func(prob,i,repeat)
  i < 3 ? u0 = [1.0] : u0 = [2.0]
  i == 2 ? p = (prob.p[1],0.2) : p = (prob.p[1],0.1)
  ODEProblem{true}(f1,u0,(0.0,10.0),p)
end
prob = MonteCarloProblem(prob1,prob_func = prob_func)

# Just to show what this looks like
sol = solve(prob,Tsit5(),saveat=t,parallel_type = :none,
            num_monte = 3)

loss1 = L2Loss(t,data1)
loss2 = L2Loss(t,data2)
loss3 = L2Loss(t,data3)
loss(sol) = loss1(sol[1]) + loss2(sol[2]) + loss3(sol[3])

function my_problem_new_parameters(prob,p)
  prob.prob.p[1] = p[1]
  prob
end
obj = build_loss_objective(prob,Tsit5(),loss,
                           prob_generator = my_problem_new_parameters,
                           num_monte = 3,
                           saveat = t)

using Optim
res = optimize(obj,0.0,1.0)