我有一个const item = obj[id];
,按data.frame
,folder
分组,并包含每个z_stack_id
的计数。 “主要”图层为binary_layer
。我已经计算过其他地方的交叉点()。我的目标是计算文件夹内的z_stack内的比例(如果需要,还可以计算其他分组变量)。我希望使用FITC, TRITC, and Cy5
。但我不确定如何去做这样的功能。
该函数的预期输出将是每个主图层的比例,按folder / z_stack_id /(...)分组。例如,对于dplyr::group_by(...) %>% summarise(my_custom_fancy_function)
Cy5
,FITC_Cy5/Cy5
,TRITC_Cy5/Cy5
请注意Triple/Cy5
并不总是有计数,所以我需要先填写这些组(目前正在处理它)。
Triple
我手工制作了Cy5计算的例子。请注意 my_df
# A tibble: 13 x 4
folder z_stack_id binary_layer n_blobs
<chr> <dbl> <chr> <int>
1 20180601_122650_896 1.00 Cy5 959
2 20180601_122650_896 1.00 FITC 16
3 20180601_122650_896 1.00 TRITC 499
4 20180601_122650_896 2.00 Cy5 225
5 20180601_122650_896 2.00 FITC 157
6 20180601_122650_896 2.00 TRITC 19
7 20180601_122650_896 1.00 FITC_Cy5 5
8 20180601_122650_896 1.00 FITC_TRITC 2
9 20180601_122650_896 1.00 TRITC_Cy5 301
10 20180601_122650_896 2.00 FITC_Cy5 34
11 20180601_122650_896 2.00 FITC_TRITC 8
12 20180601_122650_896 2.00 Triple 4
13 20180601_122650_896 2.00 TRITC_Cy5 8
dput(my_df)
structure(list(folder = c("20180601_122650_896", "20180601_122650_896",
"20180601_122650_896", "20180601_122650_896", "20180601_122650_896",
"20180601_122650_896", "20180601_122650_896", "20180601_122650_896",
"20180601_122650_896", "20180601_122650_896", "20180601_122650_896",
"20180601_122650_896", "20180601_122650_896"), z_stack_id = c(1,
1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2), binary_layer = c("Cy5",
"FITC", "TRITC", "Cy5", "FITC", "TRITC", "FITC_Cy5", "FITC_TRITC",
"TRITC_Cy5", "FITC_Cy5", "FITC_TRITC", "Triple", "TRITC_Cy5"),
n_blobs = c(959L, 16L, 499L, 225L, 157L, 19L, 5L, 2L, 301L,
34L, 8L, 4L, 8L)), class = c("tbl_df", "tbl", "data.frame"
), row.names = c(NA, -13L), .Names = c("folder", "z_stack_id",
"binary_layer", "n_blobs"))
列上的大多数结果都是虚假的。唯一有意义的是其中prop_main_Cy5
的Cy5值是总数(例如,FITC_TRITC / Cy5没有意义)
z_stack_id
答案 0 :(得分:0)
也许是这样的,使用prop.table()
,然后使用ungroup()
和group_by
来提升汇总级别?
library(tidyverse)
my_df %>%
group_by(folder, z_stack_id) %>%
mutate(prop_binary_layer = n_blobs/sum(n_blobs)) %>%
ungroup %>%
group_by(folder) %>%
mutate(prop_z_stack_id = n_blobs/sum(n_blobs))
#> # A tibble: 13 x 6
#> # Groups: folder [1]
#> folder z_stack_id binary_layer n_blobs prop_bina~ prop_z_~
#> <chr> <dbl> <chr> <int> <dbl> <dbl>
#> 1 20180601_122650_896 1.00 Cy5 959 0.538 0.429
#> 2 20180601_122650_896 1.00 FITC 16 0.00898 0.00715
#> 3 20180601_122650_896 1.00 TRITC 499 0.280 0.223
#> 4 20180601_122650_896 2.00 Cy5 225 0.495 0.101
#> 5 20180601_122650_896 2.00 FITC 157 0.345 0.0702
#> 6 20180601_122650_896 2.00 TRITC 19 0.0418 0.00849
#> 7 20180601_122650_896 1.00 FITC_Cy5 5 0.00281 0.00224
#> 8 20180601_122650_896 1.00 FITC_TRITC 2 0.00112 0.000894
#> 9 20180601_122650_896 1.00 TRITC_Cy5 301 0.169 0.135
#> 10 20180601_122650_896 2.00 FITC_Cy5 34 0.0747 0.0152
#> 11 20180601_122650_896 2.00 FITC_TRITC 8 0.0176 0.00358
#> 12 20180601_122650_896 2.00 Triple 4 0.00879 0.00179
#> 13 20180601_122650_896 2.00 TRITC_Cy5 8 0.0176 0.00358
答案 1 :(得分:0)
这就是我最终这样做的方式。它是分割数据的组合,在每个folder
级别内进行一些过滤,稍微更改名称以便以后重新加入。
一旦每个z_stack_id
具有每个通道的正确值(FITC_blobs,TRITC_blobs,Cy5_blobs),我们可以bind_rows
并执行比例。这种方法仍然存在虚假的比例,但它们可以在某种程度上被过滤掉。
我不得不进行一些列重命名,因为我的实际数据与简化问题中发布的列不同。我将它浓缩成一个函数。
calculate_blob_proportions <- function(dataframe){
dataframe <- dataframe %>% ungroup()
# prepare a list
li <- list()
for (i in unique(dataframe$folder)){
# Get each folder
my_df <- dataframe %>% filter(folder == i) %>%
mutate(filename_cells = ifelse(is.na(filename_cells),
filename_coloc,
filename_cells)) %>%
rename(filename = filename_cells) %>%
select(-filename_coloc)
Cy5 <- filter(my_df, binary_layer=="Cy5") %>%
rename(Cy5_blobs = n_blobs) %>%
select(-binary_layer, -filename) %>%
left_join(my_df)
TRITC <- filter(my_df, binary_layer=="TRITC") %>%
rename(TRITC_blobs = n_blobs) %>%
select(-binary_layer, -filename) %>%
left_join(my_df)
FITC <- filter(my_df, binary_layer=="FITC") %>%
rename(FITC_blobs = n_blobs) %>%
select(-binary_layer, -filename) %>%
left_join(my_df)
li[[i]] <- left_join(Cy5,left_join(TRITC,FITC)) %>%
select(RatID, folder, filename, z_stack_id,
binary_layer, n_blobs,
FITC_blobs, TRITC_blobs, Cy5_blobs)
}
df_out <- bind_rows(li) %>%
mutate(FITC_prop = n_blobs/FITC_blobs,
TRITC_prop = n_blobs/TRITC_blobs,
Cy5_prop = n_blobs/Cy5_blobs)
return(df_out)
}