我正在使用此代码link code font
import cv2
import numpy as np
img = cv2.imread('opencv_logo.png',0)
img = cv2.medianBlur(img,5)
cimg = cv2.cvtColor(img,cv2.COLOR_GRAY2BGR)
circles = cv2.HoughCircles(img,cv2.HOUGH_GRADIENT,1,20,
param1=50,param2=30,minRadius=0,maxRadius=0)
circles = np.uint16(np.around(circles))
for i in circles[0,:]:
# draw the outer circle
cv2.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2)
# draw the center of the circle
cv2.circle(cimg,(i[0],i[1]),2,(0,0,255),3)
cv2.imshow('detected circles',cimg)
cv2.waitKey(0)
cv2.destroyAllWindows()
可能很容易,但有人可以帮我理解for循环吗?
谢谢!
答案 0 :(得分:3)
i
中的每个for i in circles[0,:]:
都是一个代表圆圈的列表。 i
由三个值组成:它的中心的x坐标,它的中心的y坐标和半径。
如果查看documentation for cv2.circle
,您会看到如何使用中心和半径绘制圆圈。
答案 1 :(得分:1)
使用Hough Circles的工作示例查看此链接。 https://www.pyimagesearch.com/2014/07/21/detecting-circles-images-using-opencv-hough-circles/
我自己并不熟悉,但我确实在几个学期前参加了计算机视觉课程,发现这个网站非常有用。
在文章中,他提供了一些评论代码。似乎circles
是图像中检测到的所有圆圈的列表。圆圈似乎是一个包含圆心坐标和半径的对象。
# detect circles in the image
circles = cv2.HoughCircles(gray, cv2.cv.CV_HOUGH_GRADIENT, 1.2, 100)
# ensure at least some circles were found
if circles is not None:
# convert the (x, y) coordinates and radius of the circles to integers
circles = np.round(circles[0, :]).astype("int")
# loop over the (x, y) coordinates and radius of the circles
for (x, y, r) in circles:
# draw the circle in the output image, then draw a rectangle
# corresponding to the center of the circle
cv2.circle(output, (x, y), r, (0, 255, 0), 4)
cv2.rectangle(output, (x - 5, y - 5), (x + 5, y + 5), (0, 128, 255), -1)
# show the output image
cv2.imshow("output", np.hstack([image, output]))
cv2.waitKey(0)
关于您的代码,有关i
的值的更多详细信息,请尝试打印i
以及获取类型,这应该会给您一个提示。
print i
print type(i)