我试图在直方图上绘制最佳拟合泊松分布,以显示数据中的过度分散。我遇到了一段代码:第一部分创建直方图并计算泊松模型。到现在为止还挺好。
hist(patents$ncit, nclas=14,col="light blue",prob=T,
xlab="Number of citations",ylab="",main="",
cex.lab=1.5,cex.axis=1.3)
glm(formula = ncit ~ 1, family = poisson, data = patents)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.7513 -1.7513 -0.4604 0.3596 6.4405
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.42761 0.01164 36.72 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 13359 on 4808 degrees of freedom
Residual deviance: 13359 on 4808 degrees of freedom
AIC: 20350
Number of Fisher Scoring iterations: 6
在代码的第二部分中,构造了最佳拟合泊松线。我不明白 exp(0.32723))
来自哪里?
lines(0:14,dpois(0:14,exp(0.32723)),col="red",lwd=2)