LME模型中第0层,第1块的后向解析中的奇点

时间:2018-05-24 09:06:56

标签: r mixed-models

输入数据, 从https://pastebin.com/1f7VuBkx复制(太大而不包括在这里)

data.frame':    972 obs. of  7 variables:
$ data_mTBS : num  20.3 22.7 0 47.8 58.7 ...
$ data_tooth: num  1 1 1 1 1 1 1 1 1 1 ...
$ Adhesive  : Factor w/ 4 levels "C-SE2","C-UBq",..: 2 2 2 2 2 2 2 2 2 2 ...
$ Approach  : Factor w/ 2 levels "ER","SE": 1 1 1 1 1 1 1 1 1 1 ...
$ Aging     : Factor w/ 2 levels "1w","6m": 1 1 1 1 1 1 2 2 2 2 ...
$ data_name : Factor w/ 40 levels "C-SE2-1","C-SE2-10",..: 11 11 11 11 11 11 11 11 11 11 ...
$ wait      : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...
head(Data)


   data_mTBS data_tooth Adhesive Approach Aging data_name wait
1     20.27          1    C-UBq       ER    1w   C-UBq-1   no
2     22.73          1    C-UBq       ER    1w   C-UBq-1   no
3      0.00          1    C-UBq       ER    1w   C-UBq-1   no
4     47.79          1    C-UBq       ER    1w   C-UBq-1   no
5     58.73          1    C-UBq       ER    1w   C-UBq-1   no
6     57.02          1    C-UBq       ER    1w   C-UBq-1   no

当我在没有“等待”的情况下运行以下代码时,它运行得很好,但是当我尝试使用模型中包含的“wait”运行它时,它会产生奇点问题。

LME_01<-lme(data_mTBS ~ Adhesive*Approach*Aging*wait, na.action=na.exclude,data = Data, random = ~ 1|data_name);
  

MEEM中的错误(object,conLin,control $ niterEM):奇点   backsolve在0级,第1区

contrast_Aging<-contrast(LME_01,a = list(Aging =c("1w"),Adhesive = levels(Data$Adhesive),Approach = levels(Data$Approach) ),b = list(Aging =c("6m"), Adhesive = levels(Data$Adhesive),Approach = levels(Data$Approach)))

c1<-as.matrix(contrast$X)
Contrastsi2<-summary(glht(LME_01, c1))

&安培;

contrast_Approach<-contrast(LME_01,
                                    a = list(Approach = c("SE"), Aging =levels(Data$Aging)   ,Adhesive = levels(Data$Adhesive)),
                                    b = list(Approach = c("ER"), Aging =levels(Data$Aging)   ,Adhesive = levels(Data$Adhesive)))

c2<-as.matrix(contrast$X)
Contrastsi3<-summary(glht(LME_01, c2))

提前致谢。

1 个答案:

答案 0 :(得分:6)

@HongOoi告诉你,

tl; dr waitAdhesive在你的模型中混淆了。 lme比R中的许多其他建模函数更愚蠢/更顽固,它会明确地警告你有混淆的固定效果或者为你自动删除其中一些。

如果您绘制数据,这样会更容易看到:

## source("SO50505290_data.txt")

library(ggplot2)
ggplot(dd,aes(Adhesive,data_mTBS,
              fill=Aging,
              alpha=Approach))+
  facet_grid(.~wait,scale="free_x",space="free",
             labeller=label_both)+
  guides(alpha = guide_legend(override.aes = list(fill = "darkgray")))+
  geom_boxplot()
ggsave("SO50505290.png")

enter image description here

这表明知道wait=="no"与了解Adhesive=="C-UBq"相同。

备份和思考您提出的问题可能更有意义,但如果您使用lme4::lmer执行此操作,它会告诉您

  

固定效应模型矩阵排名不足,因此下降了16列/系数

library(lme4)
LME_02<-lmer(data_mTBS ~ Adhesive*Approach*Aging*wait+
               (1|data_name), 
            na.action=na.exclude,data = dd)