我正在继续研究格子和半格,并突然有了这个问题。
基本上,我们有一个[a,b]对的RelationList,这意味着(a,b)是一个边。现在我们应该知道,这是一个由RelationList 1连接形成的图形。 顺便说一下,我们有一个有序图,所以(a,b)的顺序很重要。
clear_link(X, Y, RelationList) :-
(member([X,Y], RelationList)
;
member([Y,X], RelationList)),
X =\= Y.
linked(X, Y, RelationList) :-
clear_link(X, Y, RelationList),
!.
linked(X, Y, RelationList) :-
clear_link(X, Z, RelationList),
linked(Z, Y, RelationList).
simple_connect(RelationList, E) :-
forall((member(X, E),
member(Y, E), X < Y),
linked(X, Y, RelationList)).
但是,对于6元素图,我有stackoverflow。
?- simple_connect([[2,1],[2,3],[4,3],[4,5],[6,5]],[1,2,3,4,5,6]).
ERROR: Out of local stack
我定义错了吗?
答案 0 :(得分:2)
我纠正了一些。现在很好
clear_link(X, Y, RelationList) :-
member([X,Y], RelationList),
X =\= Y.
linked(X, Y, RelationList) :-
clear_link(X, Y, RelationList),
!.
linked(X, Y, RelationList) :-
clear_link(X, Z, RelationList),
linked(Z, Y, RelationList),
!.
simple_connect(RelationList, E) :-
forall((member(X, E),
member(Y, E), X < Y),
linked(X, Y, RelationList)).
connective_graph(RelationList, E) :-
findall(Relation, (
member(X, RelationList),
sort(X, Relation)
),SortRelationList),
simple_connect(SortRelationList, E).
和
?- connective_graph([[2,1],[2,3],[4,3],[4,5],[6,5]],[1,2,3,4,5,6]).
true.
?- connective_graph([[2,1],[4,3],[4,5],[6,5]],[1,2,3,4,5,6]).
false.
正确答案(复制到发布)
connected(X, Y, RelationList) :-
(member([X,Y], RelationList);
member([Y,X], RelationList)).
path(X, Y, RelationList, Path) :-
travel(X, Y, RelationList, [X], ReversePath),
reverse(ReversePath, Path),!.
travel(X, Y, RelationList, Point, [Y | Point]) :-
connected(X, Y, RelationList).
travel(X, Y, RelationList, Visited, Path) :-
connected(X, Z, RelationList),
Z =\= Y,
\+member(Z, Visited),
travel(Z, Y, RelationList, [Z|Visited], Path).
connective_graph(RelationList, E) :-
forall((member(X, E),
member(Y, E),
X < Y)
,path(X,Y,RelationList,_)).