使用cor(mtcars, method='pearson')
生成一个矩阵,显示mtcars
中所有变量与mtcars
中所有其他变量的皮尔逊相关性。例如:
head(cor(mtcars, method='pearson'))
mpg cyl disp hp drat wt qsec vs am gear
mpg 1.0000000 -0.8521620 -0.8475514 -0.7761684 0.6811719 -0.8676594 0.41868403 0.6640389 0.5998324 0.4802848
cyl -0.8521620 1.0000000 0.9020329 0.8324475 -0.6999381 0.7824958 -0.59124207 -0.8108118 -0.5226070 -0.4926866
disp -0.8475514 0.9020329 1.0000000 0.7909486 -0.7102139 0.8879799 -0.43369788 -0.7104159 -0.5912270 -0.5555692
hp -0.7761684 0.8324475 0.7909486 1.0000000 -0.4487591 0.6587479 -0.70822339 -0.7230967 -0.2432043 -0.1257043
drat 0.6811719 -0.6999381 -0.7102139 -0.4487591 1.0000000 -0.7124406 0.09120476 0.4402785 0.7127111 0.6996101
wt -0.8676594 0.7824958 0.8879799 0.6587479 -0.7124406 1.0000000 -0.17471588 -0.5549157 -0.6924953 -0.5832870
carb
mpg -0.5509251
cyl 0.5269883
disp 0.3949769
hp 0.7498125
drat -0.0907898
wt 0.4276059
如何获得上面相同的矩阵,除了每个值都是皮尔逊在每个变量之间的相关性之外,它是线性模型的r.squared
值?例如,第一列,第二行与summary(lm(mtcars$mpg~ mtcars$cyl))$r.squared
相同。谢谢
答案 0 :(得分:4)
library(tidyverse)
# kepp names of dataset
names = names(mtcars)
expand.grid(names, names, stringsAsFactors = F) %>% # create pairs of names
filter(Var1 != Var2) %>% # exclude same variables (creates warnings)
rowwise() %>% # for each row
mutate(r = summary(lm(paste(Var1, "~" ,Var2), data = mtcars))$r.squared) %>% # get the r squared
spread(Var2, r) # reshape
# # A tibble: 11 x 12
# Var1 am carb cyl disp drat gear hp mpg
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 am NA 0.00331 0.273 0.350 0.508 0.631 0.0591 0.360
# 2 carb 0.00331 NA 0.278 0.156 0.00824 0.0751 0.562 0.304
# 3 cyl 0.273 0.278 NA 0.814 0.490 0.243 0.693 0.726
# 4 disp 0.350 0.156 0.814 NA 0.504 0.309 0.626 0.718
# 5 drat 0.508 0.00824 0.490 0.504 NA 0.489 0.201 0.464
# 6 gear 0.631 0.0751 0.243 0.309 0.489 NA 0.0158 0.231
# 7 hp 0.0591 0.562 0.693 0.626 0.201 0.0158 NA 0.602
# 8 mpg 0.360 0.304 0.726 0.718 0.464 0.231 0.602 NA
# 9 qsec 0.0528 0.431 0.350 0.188 0.00832 0.0452 0.502 0.175
# 10 vs 0.0283 0.324 0.657 0.505 0.194 0.0424 0.523 0.441
# 11 wt 0.480 0.183 0.612 0.789 0.508 0.340 0.434 0.753
# # ... with 3 more variables: qsec <dbl>, vs <dbl>, wt <dbl>
如果您想要行名而不是第一列(Var1),可以在上面的管道末尾添加
... %>%
data.frame() %>%
column_to_rownames("Var1")
这将更接近cor(mtcars, method='pearson')
答案 1 :(得分:2)
我创建了一个corlm函数,用for循环填充条目
corlm <- function(df){
mat <- matrix(NA, ncol(df), ncol(df), dimnames = list(colnames(df),colnames(df)))
suppressWarnings(for(i in 1:ncol(df)){
for(j in 1:ncol(df)){
mat[i,j] = summary(lm(df[,j] ~ df[,i]))$r.squared}})
diag(mat) = NA; return(mat)
}
round(corlm(mtcars),3)
mpg cyl disp hp drat wt qsec vs am gear carb
mpg NA 0.726 0.718 0.602 0.464 0.753 0.175 0.441 0.360 0.231 0.304
cyl 0.726 NA 0.814 0.693 0.490 0.612 0.350 0.657 0.273 0.243 0.278
disp 0.718 0.814 NA 0.626 0.504 0.789 0.188 0.505 0.350 0.309 0.156
hp 0.602 0.693 0.626 NA 0.201 0.434 0.502 0.523 0.059 0.016 0.562
drat 0.464 0.490 0.504 0.201 NA 0.508 0.008 0.194 0.508 0.489 0.008
wt 0.753 0.612 0.789 0.434 0.508 NA 0.031 0.308 0.480 0.340 0.183
qsec 0.175 0.350 0.188 0.502 0.008 0.031 NA 0.554 0.053 0.045 0.431
vs 0.441 0.657 0.505 0.523 0.194 0.308 0.554 NA 0.028 0.042 0.324
am 0.360 0.273 0.350 0.059 0.508 0.480 0.053 0.028 NA 0.631 0.003
gear 0.231 0.243 0.309 0.016 0.489 0.340 0.045 0.042 0.631 NA 0.075
carb 0.304 0.278 0.156 0.562 0.008 0.183 0.431 0.324 0.003 0.075 NA