如何证明偏序归纳谓词的可判定性?

时间:2018-05-17 11:43:13

标签: coq proof deterministic formal-verification partial-ordering

上下文

我正在尝试使用Coq中的le关系定义偏序A≤B≤C,并证明它是可判定的:forall x y, {le x y} + {~le x y}

我通过等效的布尔函数leb成功完成了它,但找不到直接证明它的方法(或le_antisym对于那个母版)。我遇到了以下情况:

1 subgoal
H : le C A
______________________________________(1/1)
False

问题

  1. 我怎样才能证明le C A是错误的前提?
  2. 我还应该使用其他其他证明策略吗?
  3. 我应该以不同的方式定义谓词le吗?
  4. 最小可执行示例

    Require Import Setoid.
    
    Ltac inv H := inversion H; clear H; subst.
    
    Inductive t : Set := A | B | C.
    
    Ltac destruct_ts :=
      repeat match goal with
      | [ x : t |- _ ] => destruct x
      end.
    
    Inductive le : t -> t -> Prop :=
      | le_refl : forall x, le x x
      | le_trans : forall x y z, le x y -> le y z -> le x z
      | le_A_B : le A B
      | le_B_C : le B C .
    
    Definition leb (x y : t) : bool :=
      match x, y with
      | A, _ => true
      | _, C => true
      | B, B => true
      | _, _ => false
      end.
    
    Theorem le_iff_leb : forall x y,
      le x y <-> leb x y = true.
    Proof.
      intros x y. split; intro H.
      - induction H; destruct_ts; simpl in *; congruence.
      - destruct_ts; eauto using le; simpl in *; congruence.
    Qed.
    
    Theorem le_antisym : forall x y,
      le x y -> le y x -> x = y.
    Proof.
      intros x y H1 H2.
      rewrite le_iff_leb in *. (* How to prove that without using [leb]? *)
      destruct x, y; simpl in *; congruence.
    Qed.
    
    Theorem le_dec : forall x y, { le x y } + { ~le x y }.
      intros x y.
      destruct x, y; eauto using le.
      - apply right.
        intros H. (* Stuck here *)
        inv H.
        rewrite le_iff_leb in *.
        destruct y; simpl in *; congruence.
      - apply right.
        intros H; inv H. (* Same thing *)
        rewrite le_iff_leb in *.
        destruct y; simpl in *; congruence.
      - apply right.
        intros H; inv H. (* Same thing *)
        rewrite le_iff_leb in *.
        destruct y; simpl in *; congruence.
    Qed.
    

3 个答案:

答案 0 :(得分:4)

le的问题是传递性构造函数:当对le x y的证明进行反演或归纳时,我们对传递性案例中产生的中间点一无所知,这通常会导致证明尝试失败。您可以通过关系的替代(但仍然是归纳)表征来证明您的结果:

Require Import Setoid.

Ltac inv H := inversion H; clear H; subst.

Inductive t : Set := A | B | C.

Inductive le : t -> t -> Prop :=
  | le_refl : forall x, le x x
  | le_trans : forall x y z, le x y -> le y z -> le x z
  | le_A_B : le A B
  | le_B_C : le B C .

Inductive le' : t -> t -> Prop :=
  | le'_refl : forall x, le' x x
  | le'_A_B  : le' A B
  | le'_B_C  : le' B C
  | le'_A_C  : le' A C.

Lemma le_le' x y : le x y <-> le' x y.
Proof.
  split.
  - intros H.
    induction H as [x|x y z xy IHxy yz IHyz| | ]; try now constructor.
    inv IHxy; inv IHyz; constructor.
  - intros H; inv H; eauto using le.
Qed.

Theorem le_antisym : forall x y,
  le x y -> le y x -> x = y.
Proof.
  intros x y.
  rewrite 2!le_le'.
  intros []; trivial; intros H; inv H.
Qed.

Theorem le_dec : forall x y, { le x y } + { ~le x y }.
  intros x y.
  destruct x, y; eauto using le; right; rewrite le_le';
  intros H; inv H.
Qed.

然而,在这种情况下,我认为使用le的归纳特征并不是一个好主意,因为布尔版本更有用。当然,在某些情况下,您希望关联的两个特征:例如,有时您希望对类型的相等性进行布尔测试,但是希望使用=进行重写。 ssreflect proof language使这种风格变得容易。例如,这是您的第一次证明尝试的另一个版本。 (reflect P b谓词意味着命题P等同于断言b = true。)

From mathcomp Require Import ssreflect ssrfun ssrbool.

Inductive t : Set := A | B | C.

Inductive le : t -> t -> Prop :=
  | le_refl : forall x, le x x
  | le_trans : forall x y z, le x y -> le y z -> le x z
  | le_A_B : le A B
  | le_B_C : le B C .

Definition leb (x y : t) : bool :=
  match x, y with
  | A, _ => true
  | _, C => true
  | B, B => true
  | _, _ => false
  end.

Theorem leP x y : reflect (le x y) (leb x y).
Proof.
apply/(iffP idP); first by case: x; case y=> //=; eauto using le.
by elim=> [[]| | |] //= [] [] [].
Qed.

Theorem le_antisym x y : le x y -> le y x -> x = y.
Proof. by case: x; case: y; move=> /leP ? /leP ?. Qed.

Theorem le_dec : forall x y, { le x y } + { ~le x y }.
Proof. by move=> x y; case: (leP x y); eauto. Qed.

答案 1 :(得分:2)

我也会选择亚瑟的解决方案。但让我演示另一种方法。

首先,我们需要一些支持性的引理:

Lemma not_leXA x : x <> A -> ~ le x A.
Proof. remember A; intros; induction 1; subst; firstorder congruence. Qed.

Lemma not_leCX x : x <> C -> ~ le C x.
Proof. remember C; intros; induction 1; subst; firstorder congruence. Qed.

现在我们可以定义le_dec

Definition le_dec x y : { le x y } + { ~le x y }.
Proof.
  destruct x, y; try (left; abstract constructor).
  - left; abstract (eapply le_trans; constructor).
  - right; abstract now apply not_leXA.
  - right; abstract now apply not_leCX.
  - right; abstract now apply not_leCX.
Defined.

请注意,我使用Defined代替Qed - 现在您可以使用le_dec进行计算,这通常是使用sumbool类型的点。

我还使用abstract来隐藏评估者的证据条款。例如。我们假设我定义了一个与le_dec'相同的le_dec函数,但删除了所有abstract,那么在尝试计算le_dec B A / {时,我们会得到以下结果{1}}:

le_dec' B A

Compute le_dec B A.
(* ==> right le_dec_subproof5 *) 

答案 2 :(得分:1)

请注意,您可以使用Relations中的定义来定义订单关系。例如,它包含名为clos_refl_trans的自反和传递闭包的定义。结果证明类似于基于您的定义的证明(参见@Anton's的答案)。

Require Import Relations.

Inductive t : Set := A | B | C.

Inductive le : t -> t -> Prop :=
  | le_A_B : le A B
  | le_B_C : le B C.

Definition le' := clos_refl_trans _ le.

Lemma A_minimal : forall x, x <> A -> ~ le' x A.
Proof.
  intros. intros contra. remember A as a. induction contra; subst.
  - inversion H0.
  - contradiction.
  - destruct y; apply IHcontra2 + apply IHcontra1; congruence.
Qed.

Lemma C_maximal : forall x, x <> C -> ~ le' C x.
Proof.
  intros. intros contra. remember C as c. induction contra; subst.
  - inversion H0.
  - contradiction.
  - destruct y; apply IHcontra2 + apply IHcontra1; congruence.
Qed.

Lemma le'_antisym : forall x y,
  le' x y -> le' y x -> x = y.
Proof.
  intros. induction H.
  - destruct H.
    + apply A_minimal in H0; try discriminate. contradiction.
    + apply C_maximal in H0; try discriminate. contradiction.
  - reflexivity.
  - fold le' in *. rewrite IHclos_refl_trans1 by (eapply rt_trans; eassumption).
    apply IHclos_refl_trans2; (eapply rt_trans; eassumption).
Qed.