如何定义任意偏序关系并证明其属性?

时间:2017-04-25 20:08:17

标签: relation proof agda poset

我有一个包含所有nullary构造函数的简单数据类型,并希望为它定义一个部分顺序,包括Relation.Binary.IsPartialOrder _≡_

我的用例:类型是抽象语法树(语句,表达式,文字,项)中的排序类型,我想要一个AST的构造函数,它有效地向上转换一个术语(item≤语句,表达式≤语句,字面≤表达式。

data Sort : Set where stmt expr item lit : Sort

到目前为止我有这个:

data _≤_ : Rel Sort lzero where
    refl : {a : Sort} → a ≤ a
    trans : {a b c : Sort} → a ≤ b → b ≤ c → a ≤ c
    expr≤stmt : expr ≤ stmt
    item≤stmt : item ≤ stmt
    lit≤expr : lit ≤ expr

我可以定义isPreorder,但不知道如何定义antisym

open import Agda.Primitive
open import Data.Empty using (⊥)
open import Data.Unit using (⊤)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality using (_≡_)
import Relation.Binary.PropositionalEquality as PropEq

module Core.Sort where

data Sort : Set where
    stmt expr item lit : Sort

data _≤_ : Rel Sort lzero where
    refl : {a : Sort} → a ≤ a
    trans : {a b c : Sort} → a ≤ b → b ≤ c → a ≤ c
    lit≤expr  : lit  ≤ expr
    expr≤stmt : expr ≤ stmt
    item≤stmt : item ≤ stmt

≤-antisymmetric : Antisymmetric _≡_ _≤_
≤-antisymmetric =
    λ { refl _ → PropEq.refl;
        _ refl → PropEq.refl;
        (trans refl x≤y) y≤x → ≤-antisymmetric x≤y y≤x;
        (trans x≤y refl) y≤x → ≤-antisymmetric x≤y y≤x;
        x≤y (trans refl y≤x) → ≤-antisymmetric x≤y y≤x;
        x≤y (trans y≤x refl) → ≤-antisymmetric x≤y y≤x;
        x≤z (trans z≤y (trans y≤w w≤x)) → _ }

我不确定在最后一个句子中做什么(以及所有其他条款),无论如何这都很麻烦。

我是否错过了更方便的方法来定义任意偏序?

1 个答案:

答案 0 :(得分:1)

请注意,对于任何给定的 x y ,只要x ≤ y可证明,就会有无数的此类证明。例如,stmt ≤ stmtrefltrans refl refl等证明。这可能(但可能没有)解释为什么要证明≤-antisymmetric的麻烦(也许是不可能的)。

在任何情况下,"小于或等于",_≼_的以下定义具有以下属性:只要x ≼ y可证明,就有一个证据。额外奖励:我可以证明antisym

-- x ≺ y = x is contiguous to and less than y
data _≺_ : Rel Sort lzero where
    lit≺expr  : lit  ≺ expr
    expr≺stmt : expr ≺ stmt
    item≺stmt : item ≺ stmt

-- x ≼ y = x is less than or equal to y
data _≼_ : Rel Sort lzero where
    refl : {a : Sort} → a ≼ a
    trans : {a b c : Sort} → a ≺ b → b ≼ c → a ≼ c

≼-antisymmetric : Antisymmetric _≡_ _≼_
≼-antisymmetric refl _ = PropEq.refl
≼-antisymmetric _ refl = PropEq.refl
≼-antisymmetric (trans lit≺expr _)                   (trans lit≺expr _)     = PropEq.refl
≼-antisymmetric (trans lit≺expr refl)                (trans expr≺stmt (trans () _))
≼-antisymmetric (trans lit≺expr (trans expr≺stmt _)) (trans expr≺stmt (trans () _))
≼-antisymmetric (trans lit≺expr (trans expr≺stmt _)) (trans item≺stmt (trans () _))
≼-antisymmetric (trans expr≺stmt _)                  (trans expr≺stmt _) = PropEq.refl
≼-antisymmetric (trans expr≺stmt (trans () _))       (trans lit≺expr _)
≼-antisymmetric (trans expr≺stmt (trans () _))       (trans item≺stmt _)
≼-antisymmetric (trans item≺stmt (trans () _))       (trans lit≺expr _)
≼-antisymmetric (trans item≺stmt (trans () _))       (trans _ _)