我想将open,high和low的NaN值替换为close。但是,仅当更改为0.00
以下是我的代码
try:
url = 'https://api.iextrading.com/1.0/stock/AAME/chart/1y'
q_data = pd.read_json(url)
if q_data.change == 0.00:
q_data.open = q_data.close
q_data.high = q_data.close
q_data.low = q_data.close
except Exception:
print "No data"
continue
问题是try
循环被绕过并转到except
循环。
如何正确更改数据?
答案 0 :(得分:2)
我建议通过广播在numpy
中使用带有mask
的非循环解决方案和链式布尔掩码:
df = pd.DataFrame({'close':[100] * 6,
'open':[4,5,4,5,np.nan,4],
'high':[np.nan,8,9,4,2,3],
'low':[1,3,5,7,np.nan,np.nan],
'change':[0,3,6,9,0,4],
'col':[np.nan]*6})
print (df)
change close col high low open
0 0 100 NaN NaN 1.0 4.0
1 3 100 NaN 8.0 3.0 5.0
2 6 100 NaN 9.0 5.0 4.0
3 9 100 NaN 4.0 7.0 5.0
4 0 100 NaN 2.0 NaN NaN
5 4 100 NaN 3.0 NaN 4.0
cols = ['open', 'high', 'low']
m = df[cols].isnull().values & (df['change'] == 0).values[:, None]
df[cols] = df[cols].mask(m, df['close'], axis=0)
#numpy alternative
#df[cols] = np.where(m, df['close'].values[:, None], df[cols])
print (df)
change close col high low open
0 0 100 NaN 100.0 1.0 4.0
1 3 100 NaN 8.0 3.0 5.0
2 6 100 NaN 9.0 5.0 4.0
3 9 100 NaN 4.0 7.0 5.0
4 0 100 NaN 2.0 100.0 100.0
5 4 100 NaN 3.0 NaN 4.0
<强>解释强>:
问题链boolen DataFrame
带有boolen Series
,收到错误:
m = df[cols].isnull() & (df['change'] == 0)
ValueError: operands could not be broadcast together with shapes (18,) (3,)
解决方案位于numpy broadcasting:
print (df[cols].isnull().values)
[[False True False]
[False False False]
[False False False]
[False False False]
[ True False True]
[False False True]]
print ((df['change'] == 0).values)
[ True False False False True False]
因此有必要创建N x 1数组:
print ((df['change'] == 0).values[:, None])
[[ True]
[False]
[False]
[False]
[ True]
[False]]
m = df[cols].isnull().values & (df['change'] == 0).values[:, None]
print (m)
[[False True False]
[False False False]
[False False False]
[False False False]
[ True False True]
[False False False]]