我有以下熊猫df:
category1 category2
A B
A C
B NaN
A NaN
如果满足以下条件,我想将category2
中的值更改为D
:
category1 == A
category2 == NaN
因此,我的预期输出将是:
category1 category2
A B
A C
B NaN
A D
我尝试了两种方法:
df.loc[((df.category1 == "A") & (df.category2 == 'nan')), "category2"] = "D" # doesn't change anything
和
import numpy as np
df['category2'] = np.where(((df['category1'] == 'A') & (df['category2'] == "")), "D")
# ValueError: either both or neither of x and y should be given
为什么这两行都不起作用?
答案 0 :(得分:2)
使用以下内容:
df.loc[df.category2.isna()&df.category1.eq('A'),'category2']='D'
print(df)
category1 category2
0 A B
1 A C
2 B NaN
3 A D
答案 1 :(得分:2)
错误:
ValueError:应同时给出x和y或不给出
告诉您np.where
需要一个值,条件为True
和也 False
时都可以从中选择。就您而言,它只知道当True
为D
时。而是:
df['category2'] = np.where(((df['category1'] == 'A') & (df['category2'].isna())),
"D", df['category2'])