我正在尝试使用这个基本的LSTM模型(https://github.com/suriyadeepan/rnn-from-scratch/blob/master/lstm.py),这是一个多对多的序列模型,并将其转换为具有二元结果的序列分类器。
我的结果和功能如下所示:
import tensorflow as tf
import numpy as np
import random
import argparse
import sys
from random import sample
import configparser
import os
import csv
import pickle as pkl
from sklearn.preprocessing import OneHotEncoder, LabelBinarizer, LabelEncoder
from sklearn.datasets import make_classification
def rand_batch_gen(x, y, batch_size):
while True:
sample_idx = sample(list(np.arange(len(x))), batch_size)
yield x[sample_idx], y[sample_idx]
with open('data/paulg/metadata.pkl', 'rb') as f:
metadata = pkl.load(f)
# read numpy arrays
X = np.load('data/paulg/idx_x.npy')
Y = np.load('data/paulg/idx_y.npy')
idx2w = metadata['idx2ch']
w2idx = metadata['ch2idx']
_, Y = make_classification(n_samples = 118929, n_classes = 2, n_features=2, n_redundant=0, n_informative=1, n_clusters_per_class=1)
label_encoder = LabelEncoder()
integer_encoded = label_encoder.fit_transform(Y)
Y = Y.reshape(-1,1)
BATCH_SIZE = 256
class LSTM_rnn():
def __init__(self, state_size, num_classes,
ckpt_path='ckpt/lstm1/',
model_name='lstm1'):
self.state_size = state_size
self.num_classes = num_classes
self.ckpt_path = ckpt_path
self.model_name = model_name
# build graph ops
def __graph__():
tf.reset_default_graph()
# inputs
xs_ = tf.placeholder(shape=[None, None], dtype=tf.int32)
ys_ = tf.placeholder(shape=[None, 1], dtype=tf.int32)
# embeddings
embs = tf.get_variable('emb', [100, state_size])
rnn_inputs = tf.nn.embedding_lookup(embs, xs_)
# initial hidden state
init_state = tf.placeholder(shape=[2, None, state_size], dtype=tf.float32, name='initial_state')
# initializer
xav_init = tf.contrib.layers.xavier_initializer
# params
W = tf.get_variable('W', shape=[4, self.state_size, self.state_size], initializer=xav_init())
U = tf.get_variable('U', shape=[4, self.state_size, self.state_size], initializer=xav_init())
#b = tf.get_variable('b', shape=[self.state_size], initializer=tf.constant_initializer(0.))
# step - LSTM
def step(prev, x):
# gather previous internal state and output state
st_1, ct_1 = tf.unstack(prev)
# GATES
#
# input gate
i = tf.sigmoid(tf.matmul(x,U[0]) + tf.matmul(st_1,W[0]))
# forget gate
f = tf.sigmoid(tf.matmul(x,U[1]) + tf.matmul(st_1,W[1]))
# output gate
o = tf.sigmoid(tf.matmul(x,U[2]) + tf.matmul(st_1,W[2]))
# gate weights
g = tf.tanh(tf.matmul(x,U[3]) + tf.matmul(st_1,W[3]))
# new internal cell state
ct = ct_1*f + g*i
# output state
st = tf.tanh(ct)*o
return tf.stack([st, ct])
states = tf.scan(step,
tf.transpose(rnn_inputs, [1,0,2]),
initializer=init_state)
# predictions
V = tf.get_variable('V', shape=[state_size, num_classes],
initializer=xav_init())
bo = tf.get_variable('bo', shape=[num_classes],
initializer=tf.constant_initializer(0.))
# get last state before reshape/transpose
last_state = states[-1]
# transpose
states = tf.transpose(states, [1,2,0,3])[0]
states_reshaped = tf.reshape(states, [-1, state_size])
logits = tf.matmul(states_reshaped, V) + bo
# predictions
predictions = tf.nn.softmax(logits)
# optimization
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=ys_)
loss = tf.reduce_mean(losses)
train_op = tf.train.AdagradOptimizer(learning_rate=0.1).minimize(loss)
# expose symbols
self.xs_ = xs_
self.ys_ = ys_
self.loss = loss
self.train_op = train_op
self.predictions = predictions
self.last_state = last_state
self.init_state = init_state
# build graph
__graph__()
####
# training
def train(self, train_set, epochs=100):
# training session
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
train_loss = 0
try:
for i in range(epochs):
for j in range(100):
xs, ys = train_set.__next__()
batch_size = xs.shape[0]
_, train_loss_ = sess.run([self.train_op, self.loss], feed_dict = {
self.xs_ : xs,
self.ys_ : ys.flatten(),
self.init_state : np.zeros([2, batch_size, self.state_size])
})
train_loss += train_loss_
print('[{}] loss : {}'.format(i,train_loss/100))
train_loss = 0
except KeyboardInterrupt:
print('interrupted by user at ' + str(i))
# training ends here;
# save checkpoint
saver = tf.train.Saver()
saver.save(sess, self.ckpt_path + self.model_name, global_step=i)
#### main function
if __name__ == '__main__':
# create the model
model = LSTM_rnn(state_size = 512, num_classes=1)
# get train set
train_set = rand_batch_gen(X, Y ,batch_size=BATCH_SIZE)
# start training
model.train(train_set)
修改后的代码如下所示:
{{1}}
我收到错误消息: “排名不匹配:标签排名(收到2)应该等于logits排名减1(收到2)。”
您知道我如何成功地将此代码用于二进制分类吗?
答案 0 :(得分:0)
我不确定你是否还有其他错误。此错误来自sparse_softmax_cross_entropy_with_logits
。在您的情况下,您的标签应该是长度为118929的向量,logit应该是具有形状的矩阵(118929,2)。不要从Y
( )重新塑造make_classification
Y = Y.reshape(-1,1)
。
答案 1 :(得分:0)
将形状更改为 [无] 可能会有所帮助。
ys_ = tf.placeholder(shape=[None], dtype=tf.int32)